
 Application Note

R30AN0427EJ0300 Rev.3.00 Page 1 of 84
Nov.30.23

RA family
Capacitive Touch Software Filter Sample Program
Introduction
This application note describes software filters for capacitive touch systems.

Target Device
RA2L1 Group (R7FA2L1AB2DFP)

When applying the contents of this application note to other MCUs, please change them according to the
specifications of the MCUs and perform a thorough evaluation.

Contents

1. Overview ... 4
1.1 Folder Structure ... 4
1.2 Operation Confirmation Conditions ... 5
1.3 Correspondence Between Sample Code and Application Note ... 5

2. Software Specifications ... 6
2.1 Software Configuration Diagram ... 6
2.2 File Structures ... 8
2.3 Data List for Filter Configuration Definition ... 9
2.3.1 Constants .. 9
2.3.2 Enumerations .. 10
2.3.3 Global Variables .. 10
2.3.4 Structures .. 10
2.3.4.1 Definition for touch module and filter module access (filtering_instance_t) 11
2.3.4.2 Filter management definition (ctsu_filter_instance_t) ... 11
2.3.4.3 Filter management data (filter_instance_ctrl_t) ... 11
2.3.4.4 Filter individual management data (filter_element_ctrl_t) ... 11
2.3.4.5 Filter configuration definition (filter_config_t) .. 12
2.3.4.6 Filter content definition (filter_element_config_t) .. 12
2.4 Software Filter APIs ... 13
2.4.1 r_rssk_filter_initialize ... 14
2.4.2 r_rssk_filter_dataget .. 15
2.4.3 r_ctsu_filter_open .. 17
2.4.4 ctsu_fir_filter_open .. 20
2.4.5 ctsu_iir_filter_open .. 22
2.4.6 ctsu_median_filter_open ... 24
2.4.7 r_ctsu_filter_exec .. 26

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 2 of 84
Nov.30.23

2.5 Size and Execution Time ... 29

3. FIR Filters .. 30
3.1 Specifications .. 30
3.2 How to Use the Filter in This Sample Program ... 30
3.3 FIR Filter API ... 31
3.3.1 r_ctsu_fir_open .. 32
3.3.2 r_ctsu_fir_filter ... 33
3.3.3 r_ctsu_fir_direct_filter .. 35
3.3.4 r_ctsu_fir_transpose_filter ... 37
3.4 List of Data for FIR Filters ... 39
3.4.1 Constants .. 39
3.4.2 Global Variables .. 39
3.5 Filter Adjustment Procedure .. 40
3.5.1 Filter Processing Method ... 40
3.5.2 Filter Characteristics .. 41
3.5.3 Coefficient Definitions .. 42
3.5.4 FIR Filter Configuration Definition ... 43

4. IIR Filters ... 44
4.1 Specifications .. 44
4.2 How to Use the IIR Filter in This Sample Program ... 44
4.3 IIR Filter API .. 44
4.3.1 r_ctsu_iir_open .. 45
4.3.2 r_ctsu_iir_filter ... 46
4.4 List of Data for IIR Filters ... 48
4.4.1 Constants .. 48
4.4.2 Global Variables .. 49
4.5 Filter Adjustment Procedure .. 50
4.5.1 Filter Processing Method ... 50
4.5.2 Filter Characteristics .. 51
4.5.3 Coefficient Definition ... 53
4.5.4 IIR Filter Configuration Definition .. 54
4.5.4.1 Cascaded IIR Filter Configuration ... 55

5. Median Filters .. 57
5.1 Operation Explanation ... 57
5.2 Specifications .. 58
5.3 List of Data for Median Filters ... 58
5.3.1 Constants .. 58
5.3.2 Global Variables .. 59
5.3.3 Structures .. 60

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 3 of 84
Nov.30.23

5.3.3.1 Median filter configuration definition (median_config_t) .. 60
5.3.3.2 Median filter management data (median_ctrl_t) ... 60
5.4 Median Filter APIs ... 60
5.4.1 r_ctsu_median_open ... 61
5.4.2 r_ctsu_median_filter .. 62
5.4.1 ctsu_insert_sort ... 64
5.5 Usage Example ... 65
5.5.1 Program Implementation Example .. 65
5.5.2 Filter Adjustment Procedure .. 66
5.5.2.1 Filter Processing Method... 66
5.5.3 Filter Characteristics .. 67
5.5.3.1 Removeable noise width ... 67
5.5.3.2 Detection delay .. 69

6. How to use This Sample Project .. 70
6.1 Sample Filter Program .. 70
6.1.1 Procedure for Integration into an Existing Project ... 70
6.1.2 Sample Application Configuration and Operation ... 76
6.2 Example Project Integrating Filter Sample Program ... 78
6.2.1 Function ... 78
6.2.2 File Structure ... 79
6.2.3 How to Import the Sample Project... 81
6.2.4 How to Change the Filter Configuration and Preset.. 82

7. Supporting Documentation .. 83

Revision History .. 84

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 4 of 84
Nov.30.23

1. Overview
This application note describes the operation of the software filter sample program and how to incorporate it
into an existing project.

For more information on software filters, refer to the Capacitive Sensor MCU Capacitive Touch Noise
Immunity Guide (R30AN0426).

1.1 Folder Structure
The following shows the folder structure of this sample program.

This sample program consists of a storage folder (Touch_filter_sample_source) for the Capacitive Touch
Software Filter Sample Program and a sample project (ra2l1_rssk_filter_sample) which applies the Software
Filter Sample Program to RA2L1 Capacitive Touch Evaluation System Example Project (R20AN0595).

The RA2L1 Capacitive Touch Evaluation System Example Project is referred to as Example Project in the
following.

an-r01an0427ej0100-capacitive-touch

│

├─ Touch_filter_sample_source ・・・Filter Sample Storage Folder

│ └─touch_filter_fir ・・・FIR Filter Sample Storage Folder

│ │ └ filter_sample ・・・FIR Filter Sample Program

│ └─touch_filter_iir ・・・IIR Filter Sample Storage Folder

│ └ filter_sample ・・・IIR Filter Sample Program

│ └─touch_filter_median ・・・Median Filter Module Sample Storage Folder

│ └ filter_sample ・・・Median Filter Sample Program

│

└─ ra2l1_rssk_filter_sample ・・・Sample Project

(RA2L1 Capacitive Touch Evaluation System)

https://www.renesas.com/us/en/document/apn/capacitive-sensor-mcu-capacitive-touch-noise-immunity-guide
https://www.renesas.com/us/en/document/apn/capacitive-sensor-mcu-capacitive-touch-noise-immunity-guide

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 5 of 84
Nov.30.23

1.2 Operation Confirmation Conditions
Table 1.1 shows the operation confirmation conditions of the sample program in this application note.

Table 1.1 Operation Confirmation Conditions

Item Description
Microcontroller used RA2L1 (R7FA2L1AB2DFP)
Operating frequency High-speed on-chip oscillator 48MHz
Operating voltage 5V
Board Capacitive Touch Evaluation System with RA2L1

(Model: RTK0EG0022S01001BJ)
• RA2L1 CPU (Model: RTK0EG0018C01001BJ)
• Self-Capacitance Touch Button/Wheel/Slider Board

(Model: RTK0EG0019B01002BJ)
Integrated development environment e2 studio Version 2023-01 (23.1.0)
C compiler GCC Arm Embedded 10.3-2021.10
FSP V5.0.0
Development Assistance Tool for Capacitive
Touch Sensors

QE for Capacitive Touch V3.2.0

Emulator Renesas E2 emulator Lite

Figure 1-1 shows the device connection diagram.

Figure 1-1 Device Connection Diagram

1.3 Correspondence Between Sample Code and Application Note
Please review Figure 2-1 Configuration of Sample Program and Figure 2-2 Data Processing Flow of Sample
Program before using this sample project.

Also review 6.1 Sample Filter Program for details on how to embed the filter module into an existing
capacitive touch project and 6.2 Example Project Integrating Filter Sample Program for details on how to use
the Example Project programmed with the filter sample.

Filter specifications and parameter setting methods are described in 2. Software Specifications, 3. FIR
Filters, 4. IIR Filters, and 5. Median Filters.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 6 of 84
Nov.30.23

2. Software Specifications
This sample program operates as a software filter by applying a filter API to the data acquired by Touch API
and CTSU API. Manage the software filters you use in the filter configuration definition. The filter
configuration described in the sample program consists of Filter A (FIR filter), Filter B (IIR filter), and Filter C
(Median filter), but multiple software filters can also be used. When multiple software filters are used, the
application order is the order in which the filter configuration definitions are defined.

2.1 Software Configuration Diagram
Figure 2-1 shows the configuration of this sample program.

Figure 2-1 Configuration of Sample Program

Figure 2-2 shows the flow of data processing for this sample program.

Figure 2-2 Data Processing Flow of Sample Program

Module access
configuration

Filter A

Filter
Configuration

Filter A
configuration

Filter B
configurationFilter B

Number of
filters

Application

TOUCH API

CTSU API

Ap
pl

y
fil

te
rs

To
uc

h
pr

oc
es

s

Filter N Filter N
configuration

Touch and filter module access API

Re
ad

an
d

W
rit

e
ba

ck
m

ea
su

re
d

da
ta

Filter API

Touch
Configuration

Filter API Touch Middle (rm_touch)CTSU Driver (r_ctsu)

Filter
A

N : Natural Number*1 : CCO correction, and
Multi frequency measurement related
processing (CTSU2 only)

Touch
Detection

Chattering
Remove

Compare
ThresholdRAW Data

Moving
Average

*2

Data
Correction

*1

*2 : Set the average length to ‘1’ if user filter is applied

Filter
B

Filter
N

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 7 of 84
Nov.30.23

Table 2.1 lists the components and versions. Refer to FSP Configuration for component settings.

Table 2.1 List of Components

Component Version
Board Support Packages Common Files v5.0.0
I/O Port v5.0.0
Arm CMSIS Version 5 – Core(M) v5.9.0+renesas.0.fsp.5.0.0
RA2L1-RSSK Board Support Files v5.0.0
Board support package for R7FA2L1AB2DFP v5.0.0
Board support package for RA2L1 v5.0.0
Board support package for RA2L1 – FSP Data v5.0.0
Asynchronous General Purpose Timer v5.0.0
Capacitive Touch Sensing Unit v5.0.0
SCI UART v5.0.0
Touch v5.0.0

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 8 of 84
Nov.30.23

2.2 File Structures
The following tree shows the file structure for the sample code.

ra2l1_rssk_filter_sample
├─Touch_filter_sample_source
│ ├─touch_filter_fir ・・・FIR Filter Sample Module Storage Folder
│ │ └─filter_sample
│ │ filter_config_sample.c ・・・Filter Configuration Definition Sample Source
│ │ filter_config_sample.h ・・・Filter Configuration Definition Sample Header
│ │ fir_config_sample1.c ・・・FIR Filter Sample Preset 1 Source
│ │ fir_config_sample2.c ・・・FIR Filter Sample Preset 2 Source
│ │ fir_config_sample3.c ・・・FIR Filter Sample Preset 3 Source
│ │ fir_config_sample4.c ・・・FIR Filter Sample Preset 4 Source
│ │ r_ctsu_filter_sample.c ・・・Filter API Sample Program Source
│ │ r_ctsu_filter_sample.h ・・・Filter API Sample Program Header
│ │ r_ctsu_fir_sample.c ・・・FIR Filter Sample Program Source
│ │ r_ctsu_fir_sample.h ・・・FIR Filter Sample Program Header
│ └─touch_filter_iir ・・・IIR Filter Sample Module Storage Folder
│ └─filter_sample
│ filter_config_sample.c ・・・Filter Configuration Definition Sample Source
│ filter_config_sample.h ・・・Filter Configuration Definition Sample Header
│ iir_config_sample1.c ・・・IIR Filter Sample Preset 1 Source
│ iir_config_sample2.c ・・・IIR Filter Sample Preset 2 Source
│ iir_config_sample3.c ・・・IIR Filter Sample Preset 3 Source
│ iir_config_sample4.c ・・・IIR Filter Sample Preset 4 Source
│ iir_config_sample5.c ・・・IIR Filter Sample Preset 5 Source
│ iir_config_sample6.c ・・・IIR Filter Sample Preset 6 Source
│ r_ctsu_filter_sample.c ・・・Filter API Sample Program Source
│ r_ctsu_filter_sample.h ・・・Filter API Sample Program Header
│ r_ctsu_iir_sample.c ・・・IIR Filter Sample Program Source
│ r_ctsu_iir_sample.h ・・・IIR Filter Sample Program Header
│ └─touch_filter_median ・・・Median Filter Sample Module Storage Folder
│ └─filter_sample
│ filter_config_sample.c ・・・Median Filter Configuration Definition Sample Source
│ filter_config_sample.h ・・・Median Filter Configuration Definition Sample Header
│ median_config_sample1.c・・・Median Filter Sample Preset 1 Source
│ median_config_sample2.c・・・Median Filter Sample Preset 2 Source
│ r_ctsu_filter_sample.c・・・Filter API Sample Program Source
│ r_ctsu_filter_sample.h・・・Filter API Sample Program Header
│ r_ctsu_median_sample.c・・・Median Filter Sample Program Source
│ r_ctsu_median_sample.h・・・Median Filter Sample Program Header
└─ra2l1_rssk_filter_sample・・・Example Project Implementing Filter Sample

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 9 of 84
Nov.30.23

2.3 Data List for Filter Configuration Definition
This section describes the constants, global variables, and structures that are provided in the software filter
sample program for defining the filter configuration.

2.3.1 Constants
Table 2.2 lists the constants.

Table 2.2 Constants for Filter Configuration Definitions

Constant name Value Description
File name: filter_config_sample.h
CTSU_FILTER_NUM 1 to 3 Number of filters connected

in series
(Value varies according to
filter type and preset
definition.)

FILTER_ELEMENT_SIZE CTSU_CFG_NUM_SELF_ELEMENTS +
(CTSU_CFG_NUM_MUTUAL_ELEMENTS
× 2)

Number of measurement
results obtained using the
CTSU API (Calculated from
the touch interface
configuration definition.)

File name: r_ctsu_filter_sample.c
CTSU_IF_MAX 8 Maximum number of

definitions in touch interface
configuration

FILTER_SIZE CTSU_FILTER_NUM × CTSU_IF_MAX Number for filter
management data

FILTER_RESULT_MIN 0 Minimum value of filtered
result

FILTER_RESULT_MAX 65535 Maximum value of filtered
result

CTSU_FILTER_OPEN 0x464C5452 Initialized management
definition value

File name: r_ctsu_fir_sample.h
FIR_FILTER_ENABLE 0 to 1 FIR filter enable/disable

definition (0 = disable, 1 =
enable)

File name: r_ctsu_iir_sample.h
IIR_FILTER_ENABLE 0 to 1 IIR filter enable/disable

definition (0 = disable, 1 =
enable)

File name: r_ctsu_median_sample.h
MEDIAN_FILTER_ENABLE 0 to 1 Median filter enable/disable

definition (0 = disable, 1 =
enable)

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 10 of 84
Nov.30.23

2.3.2 Enumerations
Table 2.3 lists the enumerations for filter_type_t.

Table 2.3 filter_type_t

Member Value Description
FILTER_TYPE_NONE 0 Filter type: no filter
FILTER_TYPE_FIR 1 Filter type: FIR filter
FILTER_TYPE_IIR 2 Filter type: IIR filter
FILTER_TYPE_MEDIAN 3 Filter type: Median filter

2.3.3 Global Variables
Table 2.4 lists the global variables.

Table 2.4 Global Variables for Filter Configuration Definitions

Data Data type Description
File name: r_ctsu_filter_sample.c
g_ctsu_filter_element_index uint16_t Index for assigning

management data
g_ctsu_filter_element_control filter_element_ctrl_t Management data for filters

(Defines the data size as the
total
number of filters used x number
of measurement results.)

2.3.4 Structures
This section describes the structures used for API access in qe_touch_sample.c and the number and types
of filters defined in filter_config_sample.c

Table 2.5 Filter Structure Definitions

Definition content Data type Remarks
Filter name: qe_touch_sample.c
Definition for touch
module and filter
module access

filtering_instance_t Definition of r_rssk_filter_initialize() and
r_rssk_filter_dataget()

File name: filter_config_sample.c
Filter management
definition

ctsu_filter_instance_t Prepare for each method of touch interface
configuration.

Filter management data filter_instance_ctrl_t
Filter configuration
definition

filter_config_t To change the filter contents to be used for each
method of touch interface configuration, prepare
a definition for each filter content. Filter content definition filter_element_config_t

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 11 of 84
Nov.30.23

2.3.4.1 Definition for touch module and filter module access (filtering_instance_t)
Table 2.6 Structures for Defining Touch Module and Filter Module Access (filtering_instance_t)

Member Data type Description
p_touch_instance touch_instance_t const * Touch module management definition

pointer
p_filter_instance ctsu_filter_instance_t const * Filter management definition pointer

• Example description of structures for defining touch module and filter module access (filtering_instance_t)
filtering_instance_t g_qe_filtering_instance_config[] =
{
 {
 .p_touch_instance = &g_qe_touch_instance_config01,
 .p_filter_instance = &g_ctsu_filter_instance01,
 },
};

2.3.4.2 Filter management definition (ctsu_filter_instance_t)
Table 2.7 Structures for Defining Filter Management (ctsu_filter_instance_t)

Member Data type Description
p_ctrl filter_ctrl_t * Filter management data pointer

(This data pointer is defined as the void
type pointer.)
Filter management pointer
(Use this to assign the variables defined
in filter_instance_ctrl_t)

p_cfg filter_config_t const * Filter configuration definition pointer
p_api filter_api_t const * Filtering API pointer

• Description example of filter management definition (ctsu_filter_instance_t)
filter_instance_ctrl_t g_ctsu_filter_control01;
const ctsu_filter_instance_t g_ctsu_filter_instance01 =
{
 .p_ctrl = &g_ctsu_filter_control01,
 .p_cfg = &g_ctsu_filter_config,
 .p_api = &g_filter_on_ctsu,
};

2.3.4.3 Filter management data (filter_instance_ctrl_t)
Table 2.8 Structures for Filter Management Data (filter_instance_ctrl_t)

Member Data type Description
open uint32_t Initialized state
p_cfg filter_config_t const * Filter configuration definition pointer
p_element_ctrl filter_element_ctrl_t * Filter individual management pointer

2.3.4.4 Filter individual management data (filter_element_ctrl_t)
Table 2.9 Structures for Filter Individual Management Data (filter_element_ctrl_t)

Member Data type Description
element_num uint16_t Number of measurement results
p_filter_ctrl filter_ctrl_t * Management data pointer for each filter

Define the management data
and filter configuration to be
used for each method of
touch interface configuration.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 12 of 84
Nov.30.23

2.3.4.5 Filter configuration definition (filter_config_t)
Table 2.10 Structures for Defining Filter Configuration (filter_config_t)

Member Data type Description
filter_num uint8_t Number of filters connected in

series
p_filter_cfg filter_element_config_t Filter content definition pointer

• Description example of filter configuration definition (filter_config_t)
Defines the number and type of filters for each filter pattern to be applied.

const filter_config_t g_ctsu_filter_config =
{
 .filter_num = CTSU_FILTER_NUM,
 .p_filter_cfg = g_ctsu_filter_element_config,
};

2.3.4.6 Filter content definition (filter_element_config_t)
Table 2.11 Structures for Defining Filter Content (filter_element_config_t)

Member Data type Description
type filter_type_t Filter type
filter_element_cfg filter_ctrl_t * Configuration definition pointer

for each filter

• Description example of filter content definition (filter_element_config_t)
•
const filter_element_config_t g_ctsu_filter_element_config[] =
{
 {
 .type = FILTER_TYPE_FIR,
 . filter_element_cfg = &fir_cfg01,
 },
};

Define the filter types to be used in the order in which
they will be applied.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 13 of 84
Nov.30.23

2.4 Software Filter APIs
Table 2.12 shows the software filter APIs implemented in this sample program.

Table 2.12 Filter Initialization APIs

Function name Process description
File name: qe_touch_sample.c
qe_touch_main main processing
r_rssk_filter_initialize Touch module and filter initialization
r_rssk_filter_dataget Acquisition of filtered touch result
timer0_callback AGT interrupt callback
r_rssk_initialize Initialization of CTSU LEDs
r_rssk_led_test Test processing for CTSU LEDs
File name: r_ctsu_filter_sample.c
r_ctsu_filter_open Filter initialization
ctsu_fir_filter_open FIR filter initialization
ctsu_iir_filter_open IIR filter initialization
ctsu_median_filter_open Median filter initialization
r_ctsu_filter_exec Filter execution

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 14 of 84
Nov.30.23

2.4.1 r_rssk_filter_initialize
This function initializes the touch module and software filter. Make sure to implement this function before
using any other touch module or software filter API functions. This function must be implemented for each
touch interface.

Format

fsp_err_t r_rssk_filter_initialize (filtering_instance_t * const p_ctrl);

Parameters

p_ctrl

Dynamic software and filter management definition pointer

ReturnValues

FSP_SUCCESS /* Successfully completed. */

FSP_ERR_ASSERTION /* Argument pointer not specified. */

FSP_ERR_ALREADY_OPEN /* Initialization completed. */

FSP_ERR_INVALID_ARGUMENT /* Configuration parameters are invalid. */

Properties

Protype is declared in qe_touch_sample.c.

Description

This function calls RM_TOUCH_Open() and r_ctsu_filter_open() to initialize the touch module and software
filter.

Example

 /* Open Touch middleware and filter sample */
 err = r_rssk_filter_initialize(&g_qe_filtering_instance_config[0]);
 if (FSP_SUCCESS != err)
 {
 while (true) {}
 }

Special Notes:

This function is intended to be used in place of the RM_TOUCH_Open() call in the QE generated code.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 15 of 84
Nov.30.23

2.4.2 r_rssk_filter_dataget
This function applies a software filter to the touch measurement result and acquires the filtered touch state.

Format

fsp_err_t r_rssk_filter_dataget (filtering_instance_t * const p_ctrl, uint64_t * p_button_status, uint16_t *
p_slider_position, uint16_t * p_wheel_position);

Parameters

p_ctrl

Touch middleware and filter management definition pointer

p_button_status

Button status storage buffer pointer

p_sliderbutton_status

Slider position storage buffer pointer

p_button_status

Wheel position storage buffer pointer

ReturnValues

FSP_SUCCESS /* Successfully completed. */

FSP_ERR_ASSERTION /* Argument pointer not specified. */

FSP_ERR_INVALID_ARGUMENT /* Configuration parameters are invalid. */

FSP_ERR_NOT_OPEN /* Called without calling Open API. */

FSP_ERR_BUFFER_EMPTY /* Some filters are not yet applied because buffer is unfilled.
*/

Properties

Protype is declared in qe_touch_sample.c.

Description

This function calls R_CTSU_DataGet(), r_ctsu_filter_exec(), and R_CTSU_DataInsert() to apply the
software filter on the measured value. If the filter is successfully applied, the function calls
RM_TOUCH_DataGet() to determine touch and detect position.

Example

 /* Use filter sample software */
 err =
r_rssk_filter_dataget(&g_qe_filtering_instance_config[0],&button_status, NULL,
NULL);
 if (FSP_SUCCESS == err)
 {
 /* TODO: Add your own code here. */
 }

Special Notes:

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 16 of 84
Nov.30.23

This function is intended to be used in place of the RM_TOUCH_DataGet() call in the QE generated code.

Read touch state with filter applied
r_rssk_filter_dataget

return

Read success

yes

Apply success

yes

Read measument result
R_CTSU_DataGet

Aplly filter
r_ctsu_filter_exec

Write back measument result
R_CTSU_DataInsert

Read touch status
RM_TOUCH_DataGet

ERROR RETURN

no

no

Figure 2-3 Filtered Touch Result Acquisition API Flowchart

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 17 of 84
Nov.30.23

2.4.3 r_ctsu_filter_open
This function initializes the software filter. Make sure you implement this function before using any other API
functions. You will need to prepare filter management data and configuration definitions for the number of
touch interfaces (methods) to be used and implement them function for each touch interface.

Format

fsp_err_t r_ctsu_filter_open(filter_ctrl_t * const p_ctrl , filter_config_t const * const p_cfg , ctsu_cfg_t const
* const p_ctsu_cfg);

Parameters

p_ctrl

Filter management data pointer

p_cfg

Software filter configuration definition pointer

p_ctsu_cfg

CTSU driver configuration definition pointer

ReturnValues

FSP_SUCCESS /* Successfully completed. */

FSP_ERR_ASSERTION /* Argument pointer not specified. */

FSP_ERR_ALREADY_OPEN /* Initialization completed. */

FSP_ERR_INVALID_ARGUMENT /* Configuration parameters are invalid. */

Properties

Protype is declared in r_ctsu_filter_sample.h.

Description

This function initializes the filter management data according to arguments p_cfg and p_ctsu_cfg.

Example

 /* Open filter sample software */
 err = r_ctsu_filter_open(g_ctsu_filter_instance01.p_ctrl,
g_ctsu_filter_instance01.p_cfg, g_qe_ctsu_instance_config01.p_cfg);
 if (FSP_SUCCESS != err)
 {
 while (true) {}
 }

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 18 of 84
Nov.30.23

Special Notes:

This function references the configuration definition of the CTSU driver to determine how many times it must
call the filter initialization API for each filter module. For the self-capacitance measurement mode, the
number of calls equals the number of pins. For the mutual capacitance measurement mode, the number
calls is "the number of transmitting pins x the number of receiving pins x 2". Refer to the API descriptions
below for more details.

• FIR filter initialization API: r_ctsu_fir_open
• IIR filter initialization API: r_ctsu_iir_open
• Median filter initialization API: r_ctsu_median_open

Filter Initialization
r_ctsu_filter_open

setting for measurement
data size

All filter completed

return

yes

Each filter initialize

set open status

Figure 2-4 Filter Initialization API Flowchart

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 19 of 84
Nov.30.23

Figure 2-5 Filter Initialization API: Filter Initialization Processing Flowchart

end

use FIR filter

Each filter initialize

no

Initial settings for FIR filter
ctsu_fir_filter_open

yes

use IIR filter

Initial settings for IIR filter
ctsu_iir_filter_open

yes

use MEDIAN filter

Initial settings for MEDIAN filter
ctsu_median_filter_open

yes

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 20 of 84
Nov.30.23

2.4.4 ctsu_fir_filter_open
This function is called from r_ctsu_filter_open() when using the FIR filter. This function allocates
management data for the FIR filter and calls r_ctsu_fir_open().

Format

static fsp_err_t ctsu_fir_filter_open (filter_element_ctrl_t * p_ctrl, filter_element_config_t * p_cfg);

Parameters

p_ctrl

Filter individual management data pointer

p_cfg

FIR filter configuration definition pointer

ReturnValues

FSP_SUCCESS /* Successfully completed. */

FSP_ERR_ASSERTION /* Argument pointer not specified. */

FSP_ERR_INVALID_ARGUMENT /* Configuration parameters are invalid. */

Properties

Protype is declared in r_ctsu_filter_sample.c.

Description

This function assigns and initializes the FIR filter management data according to arguments p_ctrl and p_cfg.

Example

 if(p_filter_cfgs->type == FILTER_TYPE_FIR)
 {
 ret = ctsu_fir_filter_open(&p_instance_ctrl->p_element_ctrl[filter_id],
p_filter_cfgs->filter_element_cfg);
 }

Special Notes:

This function references the number of measurement results initially set in r_ctsu_filter_open(), and calls
the filter initialization API for the FIR filter module. Refer to the API description below for more details.

• FIR filter initialization API: r_ctsu_fir_open

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 21 of 84
Nov.30.23

Assign management data
for FIR filter

Initialization for all
management data

completed

Initial settings
for FIR filter

r_ctsu_fir_openno

Initialize success

yes ERROR RETURN

no

yes

Filter initialize function
 for FIR filter

ctsu_fir_filter_open

return

Figure 2-6 FIR Filter Initialization API Flowchart

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 22 of 84
Nov.30.23

2.4.5 ctsu_iir_filter_open
This function is called from r_ctsu_filter_open() when using the IIR filter. This function allocates management
data for the IIR filter and calls r_ctsu_iir_open().

Format

static fsp_err_t ctsu_iir_filter_open (filter_element_ctrl_t * p_ctrl, filter_element_config_t * p_cfg);

Parameters

p_ctrl

Filter individual management data pointer

p_cfg

IIR filter configuration definition pointer

ReturnValues

FSP_SUCCESS /* Successfully completed. */

FSP_ERR_ASSERTION /* Argument pointer not specified. */

FSP_ERR_INVALID_ARGUMENT /* Configuration parameters are invalid. */

Properties

Protype is declared in r_ctsu_filter_sample.c.

Description

This function assigns and initializes the IIR filter management data according to arguments p_ctrl and p_cfg.

Example

 if(p_filter_cfgs->type == FILTER_TYPE_IIR)
 {
 ret = ctsu_iir_filter_open(&p_instance_ctrl->p_element_ctrl[filter_id],
p_filter_cfgs->filter_element_cfg);
 }

Special Notes:

This function references the number of measurement results initially set in r_ctsu_filter_open(), and calls
the filter initialization API for the IIR filter module. Refer to the API description below for more details.

• IIR filter initialization API: r_ctsu_iir_open

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 23 of 84
Nov.30.23

Assign management data
for IIR filter

Initialization for all
management data

completed

Initial settings
for IIR filter

r_ctsu_iir_openno

Initialize success

yes ERROR RETURN

no

yes

Filter initialize function
 for IIR filter

ctsu_iir_filter_open

return

Figure 2-7 IIR Filter Initialization API Flowchart

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 24 of 84
Nov.30.23

2.4.6 ctsu_median_filter_open
This function is called from r_ctsu_filter_open() when using a median filter. The function assigns the
management data for the median filter and calls r_ctsu_median_open()

Format

static fsp_err_t ctsu_median_filter_open (filter_element_ctrl_t * p_ctrl, filter_element_config_t * p_cfg);

Parameters

p_ctrl

Filter management data pointer

p_cfg

Median filter configuration definition pointer

ReturnValues

FSP_SUCCESS /* Successfully completed. */

FSP_ERR_ASSERTION /* Argument pointer not specified. */

FSP_ERR_INVALID_ARGUMENT /* Configuration parameters are invalid. */

Properties

Prototype is declared in r_ctsu_filter_sample.c.

Description

This function assigns and initializes the median filter management data according to arguments p_ctrl and
p_cfg.

Example

 if(p_filter_cfgs->type == FILTER_TYPE_MEDIAN)
 {
 ret = ctsu_median_filter_open(&p_instance_ctrl->p_element_ctrl[filter_id],
p_filter_cfgs->filter_element_cfg);
 }

Special Notes:

This function references the number of measurement results initialized in r_ctsu_filter_open() and calls the
filter initialization API for the median filter module. Refer to the following API explanations for details.

• Median filter initialization API: r_ctsu_median_open

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 25 of 84
Nov.30.23

Figure 2-8 Median Filter Initialization API Flowchart

Initial settings for
MEDIAN filter

r_ctsu_median_openno

Initialize success

yes
ERROR RETURN

no

Filter initialize function for
MEDIAN filter

ctsu_median_filter_open

Assign management data
for MEDIAN filter

Initialization for all
management data

completed

yes

return

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 26 of 84
Nov.30.23

2.4.7 r_ctsu_filter_exec
This function applies the software filter to the measurement result data.

Format

fsp_err_t r_ctsu_filter_exec(filter_ctrl_t * const p_ctrl , uint16_t *p_data);

Parameters

p_ctrl

Filter management data pointer

p_data

Pointer to input/output data buffer. Applies a filter to the data in the buffer specified by this pointer and
overwrites and stores the result after filtering.

ReturnValues

FSP_SUCCESS /* Successfully completed. */

FSP_ERR_ASSERTION /* Argument pointer not specified. */

FSP_ERR_NOT_OPEN /* Executed without calling Open().*/

FSP_ERR_BUFFER_EMPTY /* Some filters not applied because buffer is unfilled. */

Properties

Protype is declared in r_ctsu_filter_sample.h.

Description

This function is used in combination with R_CTSU_DataGet() and R_CTSU_DataInsert() to apply the
filters defined by the filter configuration on the measured touch data.

Example

 /* Use filter sample software */
 err = R_CTSU_DataGet(g_qe_ctsu_instance_config01.p_ctrl, g_filter_buffer);
 if (FSP_SUCCESS == err)
 {
 r_ctsu_filter_exec(g_ctsu_filter_instance01.p_ctrl, g_filter_buffer);
 R_CTSU_DataInsert(g_qe_ctsu_instance_config01.p_ctrl, g_filter_buffer);
 }

Special Notes:

This function calls the filter execution API of each filter module. Refer to the API descriptions below for more
details.

• FIR filter initialization API: r_ctsu_fir_filter
• IIR filter initialization API: r_ctsu_iir_filter
• Median filter execution API: r_ctsu_median_filter

This function applies the filter to overwrite the measurement value data specified in the argument.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 27 of 84
Nov.30.23

To use the measurement result data for other purposes before filtering, make sure you store the unfiltered
data before executing the API.

Filter Execution
r_ctsu_filter_exec

return

All filter operation
completed

yes

Each filter operation

All data completed

yes

Figure 2-9 Filter Execution API Flowchart

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 28 of 84
Nov.30.23

Figure 2-10 Filter Execution API: Filter Execution Processing Flowchart

Read touch status
RM_TOUCH_DataGet

Write measurement result
R_CTSU_DataInsert

Filter Excution
r_ctsu_filter_execApply filter

Feedback the previous result

Read measurement result
R_CTSU_DataGet

touch status for buttons
button_status

Data buffer for reading
measurement result

g_filter_buffer

Management data for each filter

Figure 2-11 Software Filter Data Flowchart

FIR filter oepration
r_ctsu_fir_filter

use FIR filter yes

end

Each filter operation

no

IIR filter oepration
r_ctsu_iir_filter

use IIR filter yes

MEDIAN filter oepration
r_ctsu_median_filter

use MEDIAN filter yes

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 29 of 84
Nov.30.23

2.5 Size and Execution Time
Table 2.13 and Table 2.14 show the data sizes and execution times of filtering for the sample program (three
touch interface configurations: Button × 3, Slider × 1, Wheel × 1, and with shielded pins).

Table 2.13 Filter Processing Data Size and Differences

Conditions Size [Bytes]

text data bss

Before adding filters 25008 24 3360

Filter management +220 +24 +104

FIR filters (Direct type) (Note) +820 +4 +580

FIR filters (Transpose type) (Note) +788 +4 +628

IIR filters (Note) +948 +4 +388

Median filters
(MEDIAN_PRESET_TYPE_2)(Note)

+712 +4 +612

Note: This varies depending on the order of filters.
The values shown reflect values when the maximum order is defined.

Table 2.14 Filter Processing Execution Time

Conditions Execution time (1ch)

FIR filters (Direct type) (FIR_PRESET_TYPE_4) 13.84us

FIR filters (Transpose type)
(FIR_PRESET_TYPE_4)

8.69us

IIR filters (IIR PRESET TYPE 4) 16.51us

Median filters (MEDIAN_PRESET_TYPE_2) 8.69us (Note)

Note: The execution time shown reflects the self-capacitance method. In the mutual-capacitance method,
the execution time is approximately doubled because two measurements are taken per measurement.

Note: The time noted is the average execution time. The median filter execution time can vary by 5 times the
average.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 30 of 84
Nov.30.23

3. FIR Filters
FIR (Finite Impulse Response) filters are regularly used to reduce random and periodic noise.

For more information, refer to “Capacitive Sensor MCU Capacitive Touch Noise Immunity Guide
(R30AN0426).

3.1 Specifications
The calculation formulas for FIR filters are shown below.

(𝑛𝑛) = � ℎ(𝑚𝑚) ∗ 𝑥𝑥(𝑛𝑛 − 𝑚𝑚)
𝑀𝑀

𝑚𝑚=0

𝑛𝑛 indicates the sample index, ℎ (m) indicates the coefficient, 𝑥𝑥(𝑛𝑛 − m) indicates the input data of the m
sample delay, and 𝑦𝑦(𝑛𝑛) indicates the output data.

Table 3.1 shows the specifications of the sample program’s FIR filters.

Table 3.1 FIR Filters Specifications

Item Specifications Remarks
Input data type Unsigned 32-bit integer type
Output data type Unsigned 32-bit integer type
Coefficient data type Signed 15-bit fixed point Internal operations are signed 32-bit

decimal
(Integer part 17-bit, decimal part 14-
bit)

Maximum coefficient 8 The number of taps is indicated by
"order + 1"

Filter processing method • Direct type
• Transpose type

Can be switched by conditional
compilation (Refer to chapter 3.5.1)

Output results up to filter
stabilization time

Output Zero
Returns operation results
during stabilization time and
buffer unfilled response

Filter stabilization time is number of
taps (order + 1) x number of samples

Note: Coefficient: A set of constants to be applied to the constant multipliers that make up FIR filters.
Order: Number of elements in the coefficient.
Number of taps: Number of orders including zero order. (Indicates the order + 1 value)

3.2 How to Use the Filter in This Sample Program
This sample program allows you to specify filtering methods and filter characteristics by conditional
compilation.

Table 3.2 shows how to specify FIR filtering.

Direct type processing uses a smaller data size, and transpose type processing requires a shorter
processing time.

For details on the data size and processing time, see Table 2.13 and Table 2.13.

Table 3.2 Sample FIR Filtering Specification

File Definition name Description
r_ctsu_fir_sample.h FIR_FILTER_TYPE Filter processing method

FIR_FILTER_TYPE_DIRECT = Direct type
FIR_FILTER_TYPE_TRANSPOSE = Transpose Type

https://www.renesas.com/us/en/document/apn/capacitive-sensor-mcu-capacitive-touch-noise-immunity-guide
https://www.renesas.com/us/en/document/apn/capacitive-sensor-mcu-capacitive-touch-noise-immunity-guide

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 31 of 84
Nov.30.23

3.3 FIR Filter API
Table 3.3 shows the FIR filter API implemented by this sample program.

Table 3.3 FIR Filter API

Function name Process description
File name: r_ctsu_fir_sample.c
r_ctsu_fir_open FIR filter initialization processing
r_ctsu_fir_filter FIR filter execution processing
r_ctsu_fir_direct_filter Direct-type FIR filter processing
r_ctsu_fir_transpose_filter Transpose-type FIR filter processing

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 32 of 84
Nov.30.23

3.3.1 r_ctsu_fir_open
This function assigns and initializes the buffer for FIR filter processing. Make sure you execute this function
before using any other API.

Format

fsp_err_t r_ctsu_fir_open(fir_ctrl_t * const p_ctrl , fir_config_t const * const p_cfg);

Parameters

p_ctrl

FIR filter management data pointer

p_cfg

FIR filter configuration definition pointer

ReturnValues

FSP_SUCCESS /* Successfully completed. */

FSP_ERR_ASSERTION /* Argument pointer not specified. */

FSP_ERR_INVALID_ARGUMENT /* Configuration parameters are invalid. */

Properties

Protype is declared in r_ctsu_fir_sample.h.

Description

This function assigns and initializes the FIR filter processing buffer for one measurement result.

Example

 p_fir_cfg = (fir_config_t *)p_cfg;
 p_element_ctrl->p_filter_ctrl = gp_ctsu_fir_ctrl;
 for(element_id = 0; element_id < p_element_ctrl->element_num; element_id++)
 {
 p_fir_ctrl = (fir_ctrl_t *)p_element_ctrl->p_filter_ctrl;
 ret = r_ctsu_fir_open(&p_fir_ctrl[element_id], p_fir_cfg);
 if(ret != FSP_SUCCESS)
 {
 return ret;
 }
 }

Special Notes:

Before executing this function, it is necessary to set a pointer to the FIR filter management data by
referring to the position pointer at the time the FIR filter management data is assigned.

This function must be executed the number of times the measurement result data is read by the CTSU
driver for each touch interface. (For self-capacitance method, this is the number of pins; for mutual
capacitance method, this is "the number of transmitting pins x the number of receiving pins x 2.”

Refer to the filter initialization API (r_ctsu_filter_open) description for more details.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 33 of 84
Nov.30.23

3.3.2 r_ctsu_fir_filter
This function applies the FIR filter processing on one measurement result.

Format

fsp_err_t r_ctsu_fir_filter (fir_ctrl_t * const p_ctrl , int32_t *p_data) ;

Parameters

p_ctrl

FIR filter management data pointer

p_data

FIR filter measurement result data pointer

ReturnValues

FSP_SUCCESS /* Successfully completed. */

FSP_ERR_ASSERTION /* Argument pointer not specified. */

FSP_ERR_INVALID_ARGUMENT /* Configuration parameters are invalid. */

FSP_ERR_BUFFER_EMPTY /* Some filters are not yet applied because buffer is unfilled. */

Properties

Protype is declared in r_ctsu_fir_sample.h.

Description

This function applies the FIR filter processing on one measurement result.

Example

 /* Apply FIR filter */
 if(p_instance_ctrl->p_cfg->p_filter_cfg[filter_id].type == FILTER_TYPE_FIR)
 {
 p_fir_ctrl = (fir_ctrl_t *)p_instance_ctrl-
>p_element_ctrl[filter_id].p_filter_ctrl;
 fir_err = r_ctsu_fir_filter(&p_fir_ctrl[element_id], &filter_data);
 if(FSP_SUCCESS != fir_err)
 {
 ret = fir_err;
 }
 }

Special Notes:

The processing executed by this function varies according to the conditional compilation
(FIR_FILTER_TYPE).

Also refer to the direct-type FIR filter execution API (r_ctsu_fir_direct_filter) and the transpose-type FIR
filter execution API (r_ctsu_fir_transport_filter).

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 34 of 84
Nov.30.23

FIR filter operation
r_ctsu_fir_filter

response of apply filter

Direct type FIR filter
r_ctsu_fir_direct_filter

Traspose type FIR filter
r_ctsu_fir_transpose_filter

Figure 3-1 FIR Filter Execution API Flowchart

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 35 of 84
Nov.30.23

3.3.3 r_ctsu_fir_direct_filter
This function applies the direct-type FIR filter processing on one measurement result.

Format

fsp_err_t r_ctsu_fir_direct_filter(fir_ctrl_t * const p_ctrl , int32_t *p_data);

Parameters

p_ctrl

FIR filter management data pointer

p_data

FIR filter measurement result data pointer

ReturnValues

FSP_SUCCESS /* Successfully completed. */

FSP_ERR_ASSERTION /* Argument pointer not specified. */

FSP_ERR_INVALID_ARGUMENT /* Configuration parameters are invalid. */

FSP_ERR_BUFFER_EMPTY /* Some filters are not yet applied because buffer is unfilled. */

Properties

Protype is declared in r_ctsu_fir_sample.c.

Description

This function is called from the FIR filter execution process (r_ctsu_fir_filter) when the conditional
compilation FIR_FILTER_TYPE = FIR_FILTER_TYPE_DIRECT.

When data in the signed 18-bit integer range (131071 to -131072) or higher is passed as measurement
value data, the operation is performed as if the upper or lower limit value was entered.

The result of the operation is limited to the range of signed 18-bit integers (131071 to -131072); if it
exceeds the range, it will be rounded to the upper or lower limit.

Special Notes:

Returns buffer unfilled response during filter stabilization time.

Until the filter stabilization time elapses, the filtered result is the operation result when the unfilled range is
in the initialized state (0).

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 36 of 84
Nov.30.23

Direct type FIR filter
r_ctsu_fir_direct_filter

response of apply filter

buffering

buffering completed

Calculate FIR filter

response of buffering incomplete

no

yes

Figure 3-2 Direct-type FIR Filter API Flowchart

data buffering
r_ctsu_fir_filter

(r_ctsu_fir_direct_filter)

Calculation of FIR filter
r_ctsu_fir_filter

(r_ctsu_fir_direct_filter)

Apply filter

Direct type

Write measurement result
R_CTSU_DataInsert

Read measured values
R_CTSU_DataGet

Input measurement value

coefficient of FIP filter
fir_cfg01.p_coefficient

Data buffer for reading
measurement result

g_filter_buffer
Fir filter buffers

g_ctsu_fir_buffer

Figure 3-3 Direct-type FIR Filter Data Flowchart

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 37 of 84
Nov.30.23

3.3.4 r_ctsu_fir_transpose_filter
This function applies the transpose filter processing on one measurement result.

Format

fsp_err_t r_ctsu_fir_transpose_filter (fir_ctrl_t * const p_ctrl , int32_t *p_data);

Parameters

p_ctrl

FIR filter management data pointer

p_data

FIR filter measurement result data pointer

ReturnValues

FSP_SUCCESS /* Successfully completed. */

FSP_ERR_ASSERTION /* Argument pointer not specified. */

FSP_ERR_INVALID_ARGUMENT /* Configuration parameters are invalid. */

FSP_ERR_BUFFER_EMPTY /* Some filters are not yet applied because buffer is unfilled. */

Properties

Protype is declared in r_ctsu_fir_sample.c.

Description

This function is called from the FIR filter execution process (r_ctsu_fir_filter) when the conditional
compilation FIR_FILTER_TYPE = FIR_FILTER_TYPE_TRANSPOSE.

When data in the signed 18-bit integer range (131071 to -131072) or higher is passed as measurement
value data, the operation is performed as if the upper or lower limit value was entered.

The result of the operation is limited to the range of signed 18-bit integers (131071 to -131072); if it
exceeds the range, it will be rounded to the upper or lower limit.

Special Notes:

Returns buffer unfilled response during filter stabilization time.

Until the filter stabilization time elapses, the filtered result is the operation result when the unfilled range is
in the initialized state (0).

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 38 of 84
Nov.30.23

Transpose type FIR filter
r_ctsu_fir_transpose_filter

response of apply filter

Calculated for filter
order

result of buffering incomplete

no

yes

Calculate FIR filter

Figure 3-4 Transpose-type FIR Filter API Flowchart

Calculation of FIR filter
r_ctsu_fir_filter

(r_ctsu_fir_transpose_filter)

Feedback the previous resultApply filter

Transpose Type

Write measurement result
R_CTSU_DataInsert

Read measurement result
R_CTSU_DataGet

Input measurement value

coefficient of FIP filter
fir_cfg01.p_coefficient

Data buffer for reading
measurement result

g_filter_buffer

Fir filter buffers
g_ctsu_fir_buffer

Figure 3-5 Transpose-type FIR Filter Data Flowchart

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 39 of 84
Nov.30.23

3.4 List of Data for FIR Filters
This section explains the constants and global variables provided for FIR filters.

3.4.1 Constants
Table 3.4 lists the constants.

Table 3.4 Constants for FIR Filters

Constant name Setting value Description
File name: r_ctsu_fir_sample.h
FIR_FILTER_NUM 1 Number of filter stages
File name: r_ctsu_fir_sample.c
FIR_TAP_SIZE_MIN 2 Minimum number of taps
FIR_TAP_SIZE_MAX 9 Maximum number of taps
FIR_CFG_DECIMAL_POINT 14 Fixed point number of digits
FIR_FILTER_SIZE FIR_FILTER_NUM x

FILTER_ELEMENT_SIZE
Buffer size for FIR filters
(Calculated from the number of filter
stages and the number of measurement
results.)

MAX_FIR_COEFFICIENT_SUM 0x00008000 Maximum value of the coefficient sum
MIN_FIR_COEFFICIENT_SUM 0xFFFF7FFF Minimum value of the coefficient sum
MAX_FIR_COEFFICIENT_PLUS 0x3FFF Maximum value of the coefficient value
MIN_FIR_COEFFICIENT_MINUS 0xC000 Minimum value of the coefficient value
FIR_RESULT_MAX 0x0001FFFF Maximum value of the filter result
FIR_RESULT_MIN 0xFFFE0000 Minimum value of the filter result

3.4.2 Global Variables
Table 3.5 lists the global variables.

Table 3.5 Global Variables for FIR Filters

Variable name Data type Description
File name: r_ctsu_fir_sample.c
g_ctsu_fir_element_index uint16_t Buffer allocation management index
g_ctsu_fir_ctrl[FIR_FILTER_SIZE] fir_ctrl_t FIR filter management data

Buffer size is number of pins (number of
self-capacitance electrodes + number of
mutual-capacitance electrodes x 2) x
number of FIR filter stages
※Number of mutual-capacitance
electrodes = number of transmitting pins ×
number of receiving pins

gp_ctsu_fir_ctrl fir_ctrl_t * Position pointer at time of FIR filter
management data allocation

g_ctsu_fir_buffer[FIR_FILTER_SIZ
E][FIR_TAP_SIZE_MAX]

int32_t FIR filter buffer
Buffer size is number of pins (number of
self-capacitance electrodes + number of
mutual-capacitance electrodes x 2) x
maximum number of taps (9)
※Number of mutual-capacitance
electrodes = number of transmitting pins ×
number of receiving pins
※For transpose-type: buffer size is
number of pins (number of self-
capacitance electrodes + number of
mutual-capacitance electrodes x 2) x
(maximum number of taps (9) + 1)

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 40 of 84
Nov.30.23

3.5 Filter Adjustment Procedure
You can change the coefficient definition of FIR filters and adjust the filter properties, as described below.

3.5.1 Filter Processing Method
Conditional compilation allows you to specify how FIR filters are handled. Direct-type processing uses a
smaller data size, and transpose-type processing requires a shorter processing execution time.

See Table 3.2 for how to set up conditional compilation.

For details on the data size and execution processing time, see Table 2.13 and Table 2.14.

Figure 3-6 shows a block diagram of the FIR filter.

Transpose Type

Direct Type

Input
（measured value）

Input data
1 time before

31bit

Input data
2 times before

Input data
M times before

31bit

Output
（Filtered result）

31bit 31bit 31bit

Input
（measured value）

Output data
M time before

31bit

Output data
M-1 time before

Output data
1 time before

31bit

Output
（Filtered result）

31bit 31bit 31bit

16bit

Coefficient 1 Coefficient 2 Coefficient 3 Coefficient M-1 Coefficient M

16bit

15
bit

15
bit

15
bit

15
bit

15
bit

Coefficient 1Coefficient 2Coefficient M-2Coefficient M-1Coefficient M
15
bit

15
bit

15
bit

15
bit

15
bit

16bit

16bit

1/14bit

1/14bit

Figure 3-6 FIR Filter Block Diagram

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 41 of 84
Nov.30.23

3.5.2 Filter Characteristics
This sample program can handle filters of up to eight orders.

Table 3.6 defines the characteristics of sample FIR filters. The filter characteristics can be changed by
specifying the coefficient and filter configuration definitions shown in Table 3.7.

Table 3.6 Sample FIR Filters Specification

File Definition name Description
filter_config_sample.h FIR_PRESET_TYPE Sample preset specification for use with FIR filter

Table 3.7 Sample FIR Filters Coefficient Definition

 FIR_PRESET_TYPE_1 FIR_PRESET_TYPE_2 FIR_PRESET_TYPE_3 FIR_PRESET_TYPE_4
FIR moving-average filter FIR low-pass filter

Order 2 5 3 8
Coefficient 0.33331298828125 0.1666259765625 0.1636962890625 -0.00604248046875

0.33331298828125 0.1666259765625 0.3363037109375 -0.01336669921875
0.33331298828125 0.1666259765625 0.3363037109375 0.05047607421875
 0.1666259765625 0.1636962890625 0.26800537109375
 0.1666259765625 0.40185546875000
 0.1666259765625 0.26800537109375
 0.05047607421875
 -0.01336669921875
 -0.00604248046875

Figure 3-7 Sample Preset Filter Characteristics

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 42 of 84
Nov.30.23

3.5.3 Coefficient Definitions
The coefficients of the FIR filter configuration are defined in the form of signed fixed points (decimal
numbers) with no integral part and the lower 14 bits are the decimal part; they are treated as the coefficient
value divided by 16384.

The coefficients of the sample program should be designed with a value range of -1.0 to 1.0, and the value
obtained by multiplying the fractional coefficient by 16384 (0x4000) should be set as the coefficient definition.
Small numbers less than 1LSB cannot be expressed and will cause operation errors.

Table 3.8 shows examples of decimal, hexadecimal, and decimal correspondence.

Table 3.8 Fixed Point Definition Examples

Fractional number Hexadecimal Decimal
-0.00604248046875 -0.00604248046875 ×0x4000 = FF9D -0.00604248046875 ×16384 = -99
-0.01336669921875 -0.01336669921875 ×0x4000 = FF25 -0.01336669921875 ×16384 = -219
0.05047607421875 0.05047607421875 ×0x4000 = 033B 0.05047607421875 ×16384 = 827
0.26800537109375 0.26800537109375 ×0x4000 = 1127 0.26800537109375 ×16384 = 4391
0.40185546875000 0.40185546875000 ×0x4000 = 19B8 0.40185546875000 ×16384 = 6584
0.26800537109375 0.26800537109375 ×0x4000 = 1127 0.26800537109375 ×16384 = 4391
0.05047607421875 0.05047607421875 ×0x4000 = 033B 0.05047607421875 ×16384 = 827
-0.01336669921875 -0.01336669921875 ×0x4000 = FF25 -0.01336669921875 ×16384 = -219
-0.00604248046875 -0.00604248046875 ×0x4000 = FF9D -0.00604248046875 ×16384 = -99

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 43 of 84
Nov.30.23

3.5.4 FIR Filter Configuration Definition
Define the number of taps/coefficients for FIR filters in the fir_config_t type data table.

The number of taps specifies the order of the FIR filter + 1, and the coefficient table describes the coefficient
values of the FIR filter in 15-bit signed fixed point in order from the zero order.

The number of taps is 2 to 9, and the coefficient table can only be defined within the range of -2.0 to 2.0 for
the sum of the coefficient definitions.

Note: Define the coefficient table so that the sum of the coefficient definitions approaches 1.0.
If the sum of the coefficient table exceeds 1.0, the measurement result is amplified. If it is less than
1.0, the measurement result is attenuated.

const fir_config_t fir_cfg04 =
{
 .taps = 9,
 .p_coefficient =
 {
 -99,
 -219,
 827,
 4391,
 6584,
 4391,
 827,
 -219,
 -99,
 },
};

Specifies filter order + 1 as the number of FIR
filter taps.

Defines the coefficient for the number of
taps in FIR filters.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 44 of 84
Nov.30.23

4. IIR Filters
IIR (Infinite Impulse response) filters are used regularly to reduce high-frequency components with limited
memory and small calculation load.

For more information, refer to Capacitive Sensor MCU Capacitive Touch Noise Immunity Guide
(R30AN0426).

4.1 Specifications
The calculation formulas for IIR filters are shown below.

𝑦𝑦(𝑛𝑛) = �𝑏𝑏(𝑘𝑘) ∗ 𝑥𝑥(𝑛𝑛 − 𝑘𝑘)
𝐾𝐾

𝑘𝑘=0

− � 𝑎𝑎(𝑚𝑚) ∗ 𝑦𝑦(𝑛𝑛 − 𝑚𝑚)
𝑀𝑀

𝑚𝑚=1

𝑛𝑛 indicates the sample index, a(m) and a(k) indicate the coefficients, 𝑥𝑥(𝑛𝑛 − k) indicates the input data of the k
sample delay, 𝑦𝑦(𝑛𝑛 − m) indicates the output data of the m sample delay, and 𝑦𝑦(𝑛𝑛) indicates the output data.

Table 4.1 shows the specifications of sample program’s IIR filters.

Table 4.1 IIR Filter Specifications

Item Specifications Remarks
Input data type Signed 32-bit integer
Output data type Signed 32-bit integer
Coefficient data type Signed 16-bit fixed point Internal operations are signed 32-bit

(Integer part 19-bit, decimal part 12-bit)
Maximum coefficient 4 The number of taps is indicated by

"order + 1"
Filter processing method Standard type Can be used as a cascaded IIR filter by

connecting several stages of IIR filters.
(Refer to section 4.5.4.1 for details.)

Output results up to filter
stabilization time

Returns operation results during
stabilization time and buffer
unfilled response.

Filter stabilization time is the number of
samples indicated in the configuration
definition.
(The specified range for stabilization
time is from the number of taps to 254.)

Note: Coefficient: Set of constants to be applied to the constant multipliers that make up IIR filters.
Order: Number of elements in the coefficient.
Number of taps: Number of orders including zero order. (Indicates the order + 1 value)

4.2 How to Use the IIR Filter in This Sample Program
This sample program allows you to specify filter characteristics by conditional compilation.

4.3 IIR Filter API
Table 4.2 shows a list of IIR filter API included in this sample program.

Table 4.2 IIR Filter API List

Function name Processing Description
File name: r_ctsu_iir_sample.c
r_ctsu_iir_open IIR filter initialization processing
r_ctsu_iir_filter IIR filter execution processing

https://www.renesas.com/us/en/document/apn/capacitive-sensor-mcu-capacitive-touch-noise-immunity-guide
https://www.renesas.com/us/en/document/apn/capacitive-sensor-mcu-capacitive-touch-noise-immunity-guide

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 45 of 84
Nov.30.23

4.3.1 r_ctsu_iir_open
This function assigns and initializes the buffer for IIR filter processing. Make sure you execute this function
before using any other API.

Format

fsp_err_t r_ctsu_iir_open(iir_ctrl_t * const p_ctrl , iir_config_t const * const p_cfg);

Parameters

p_ctrl

IIR filter management data pointer

p_cfg

IIR filter configuration definition pointer

ReturnValues

FSP_SUCCESS /* Successfully completed. */

FSP_ERR_ASSERTION /* Argument pointer not specified. */

FSP_ERR_INVALID_ARGUMENT /* Configuration parameters are invalid. */

Properties

Protype is declared in r_ctsu_iir_sample.h.

Description

This function assigns and initializes the IIR filter processing buffer for one measurement result.

Example

 p_iir_cfg = (iir_config_t *)p_cfg;
 p_element_ctrl->p_filter_ctrl = gp_ctsu_iir_ctrl;
 for(element_id = 0; element_id < p_element_ctrl->element_num; element_id++)
 {
 p_iir_ctrl = (iir_ctrl_t *)p_element_ctrl->p_filter_ctrl;
 ret = r_ctsu_iir_open(&p_iir_ctrl[element_id], p_iir_cfg);
 if(ret != FSP_SUCCESS)
 {
 return ret;
 }
 }

Special Notes:

Before executing this function, it is necessary to set a pointer to the IIR filter management data by referring
to the position pointer at the time the IIR filter management data is assigned.

This function must be executed the number of times the measurement result data is read by the CTSU
driver for each touch interface. (For self-capacitance method, this is the number of pins, for mutual
capacitance method, this is "the number of transmitting pins x the number of receiving pins x 2.”)

Refer to the filter initialization API (r_ctsu_filter_open) description for more details.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 46 of 84
Nov.30.23

4.3.2 r_ctsu_iir_filter
This function applies the IIR filter processing on one measurement result.

Format

fsp_err_t r_ctsu_iir_filter(iir_ctrl_t * const p_ctrl , int32_t *p_data);

Parameters

p_ctrl

IIR filter management data pointer

p_data

IIR filter measurement result data pointer

ReturnValues

FSP_SUCCESS /* Successfully completed. */

FSP_ERR_ASSERTION /* Argument pointer not specified. */

FSP_ERR_INVALID_ARGUMENT /* Configuration parameters are invalid. */

FSP_ERR_BUFFER_EMPTY /* Some filters are not yet applied because buffer is unfilled. */

Properties

Protype is declared in r_ctsu_iir_sample.h.

Description

This function applies the IIR filter processing on one measurement result.

When data in the signed 19-bit integer range (262143 to -262144) or higher is passed as measurement
value data, the operation is performed as if the upper or lower limit value was entered.

The result of the operation is limited to the range of signed 18-bit integers (131071 to -131072); if it
exceeds the range, it will be rounded to the upper or lower limit.

Example

 /* Apply IIR filter */
 if(p_instance_ctrl->p_cfg->p_filter_cfg[filter_id].type == FILTER_TYPE_IIR)
 {
 p_iir_ctrl = (iir_ctrl_t *)p_instance_ctrl-
>p_element_ctrl[filter_id].p_filter_ctrl;
 filter_err = r_ctsu_iir_filter(&p_iir_ctrl[element_id], &filter_data);
 if(FSP_SUCCESS != filter_err)
 {
 ret = filter_err;
 }
 }

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 47 of 84
Nov.30.23

Special Notes:

Returns buffer unfilled response during filter stabilization time.

Until the filter stabilization time elapses, the filtered result is the operation result when the unfilled range is
in the initialized state (0).

IIR filter
r_ctsu_iir_filter

response of apply filter

Settling time is passed

result of buffering incomplete

no

yes

Calculate IIR filter

Buffering calculate results

Figure 4-1 IIR Filter Execution API Flowchart

Calculation IIR filter
(Feedback calculation)

r_ctsu_iir_filter

Apply filter

Write measurement result
R_CTSU_DataInsert

Read measurement result
R_CTSU_DataGet

Input measurement value

coefficient of IIP filter
iir_cfg01.p_coefficient

Data buffer for reading
measurement result

g_filter_buffer

Iir filter buffers
g_ctsu_iir_buffer

Calculation IIR filter
(Feedforward calculation)

r_ctsu_iir_filter

feedback calculation

Figure 4-2 IIR Filter Data Flowchart

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 48 of 84
Nov.30.23

4.4 List of Data for IIR Filters
This section explains the constants and global variables provided for IIR filters.

4.4.1 Constants
Table 4.3 shows a list of constants for IIR filters.

Table 4.3 Constants for IIR Filters

Constant name Setting value Description
File name: filter_config_sample.h
CTSU_FILTER_NUM 1 to 8 To configure a cascaded IIR filter,

specify 2 or more filters.
File name: r_ctsu_iir_sample.h
IIR_FILTER_NUM 1 to 8 Number of IIR filter stages

To configure a cascaded IIR filter,
specify 2 or more filters.

File name: r_ctsu_iir_sample.c
IIR_TAP_SIZE_MIN 2 Minimum number of taps (order 1 + 1)
IIR_TAP_SIZE_MAX 5 Maximum number of taps (order 4 + 1)
IIR_SETTLINGS_MAX 255 Maximum stabilization wait time
IIR_CFG_DECIMAL_POINT 14 Fixed-point number of digits
IIR_CFG_POINT_OFFSET 2 Operational correction value for fixed-

point number of digits
IIR_FILTER_SIZE IIR_FILTER_NUM x

FILTER_ELEMENT_SIZE
Buffer size for IIR filters
(Calculated from the number of filter
stages and the number of
measurement results.)

IIR_DECIMAL_MAX 0x0003FFFF Upper limit value of filter data integer
part

IIR_DECIMAL_MIN 0xFFFC0000 Lower limit value of filter data integer
part

IIR_CALC_MAX 0x7FFFFFFF Upper limit value of calculation
IIR_CALC_MIN 0x80000000 Lower limit value of calculation
IIR_RESULT_MAX 0x0001FFFF Maximum value of filter result
IIR_RESULT_MIN 0xFFFE0000 Minimum value of filter result

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 49 of 84
Nov.30.23

4.4.2 Global Variables
Table 4.4 lists the global variable

Table 4.4 Global Variables for IIR Filters

Variable name Data type Description
File name: r_ctsu_fir_sample.c
g_ctsu_iir_element_index uint16_t Buffer allocation management index
g_ctsu_iir_ctrl[FIR_FILTER_SIZE] iir_ctrl_t IIR filter management data

Buffer size is number of pins (number
of self-capacitance electrodes +
number of mutual-capacitance
electrodes x 2) x number of IIR filter
stages.
※Number of mutual-capacitance
electrodes = number of transmitting
pins × number of receiving pins

gp_ctsu_iir_ctrl iir_ctrl_t * Position pointer at time of IIR filter
management data allocation

g_ctsu_fir_buffer[IIR_FILTER_SIZ
E][IIR_TAP_SIZE]

int32_t IIR filter buffer
Buffer size is number of pins (number
of self-capacitance electrodes +
number of mutual-capacitance
electrodes x 2) x maximum number of
taps (5)
※Number of mutual-capacitance
electrodes = number of transmitting
pins × number of receiving pins

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 50 of 84
Nov.30.23

4.5 Filter Adjustment Procedure
You can change the coefficient definition of IIR filters and adjust the filter properties using multiple stages of
IIR filters, as described below.

4.5.1 Filter Processing Method
For details on the data size and execution processing time, see Table 2.13 and Table 2.14.

Figure 4.3 shows a block diagram of IIR filter.

-

Input
（measured value）

Input data
1 time before

32bit

Input data
2 time before

32bit

32bit

Output
（Filtered result）

32bit 32bit

32bit

+
16bit

Coefficient B0 Coefficient B1 Coefficient B2

16bit

16
bit

16
bit

16
bit

1/12bit

16
bit

16
bitCoefficient A1 Coefficient A2

Input data
M time before

32bit

Coefficient BM
16
bit

16
bit Coefficient AM

32bit

Coefficient BM-1
16
bit

16
bit Coefficient AM-1

32bit 32bit

Figure 4-3 IIR Block Diagram

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 51 of 84
Nov.30.23

4.5.2 Filter Characteristics
This sample program can handle filters of up to four orders.

You can also configure five or more orders by defining multiple filters.

Table 4.5 defines the characteristics of sample FIR filters. The filter characteristics can be changed by
specifying the coefficient and filter configuration definitions shown in Table 4.6 and Table 4.7.

Table 4.5 Sample IIR Filter Specification

File Definition name Description
r_ctsu_iir_sample.h IIR_PRESET_TYPE Sample preset specification for use with IIR filter

Table 4.6 Sample IIR Filters Coefficient Definition (1/2)

 IIR_PRESET_TYPE_1 IIR_PRESET_TYPE_4 IIR_PRESET_TYPE_5 IIR_PRESET_TYPE_6
IIR lowpass filter IIR lowpass filter IIR peaking filter IIR moving-average

filter
Order 2 4 2 1
Coefficient
A

0 0 0 0
0.595458984375 0.6468505859375 -0.2279052734375 -0.75
0.23492431640625 0.6185302734375 -0.57470703125
 0.14617919921875
 0.0260009765625

Coefficient
B

0.45758056640625 0.15234375 0.237548828125 0.25
0.9151611328125 0.609375 -0.2279052734375 0
0.45758056640625 0.91412353515625 0.187744140625
 0.609375
 0.15234375

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 52 of 84
Nov.30.23

Table 4.7 Sample IIR Filters Coefficient Definition (2/2)

 IIR_PRESET_TYPE_2 IIR_PRESET_TYPE_3
Cascaded second-order
(biquad) IIR band stop filter

Cascaded second-order (biquad) IIR lowpass filter

Order 4 5
Coefficient
A

0 0 0 0 0
-0.78240966796
875

0.78240966796
875

0.104736328125 0.23138427734375 0.318359375

0.42639160156
25

0.42639160156
25

0 0.11639404296875 0.5357055664062
5

Coefficient
B

0.35559082031
25

1 0.5523681640625 0.3369140625 0.4635009765625

0 0 0.5523681640625 0.67388916015625 0.927001953125
0.35559082031
25

1 0 0.3369140625 0.4635009765625

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 53 of 84
Nov.30.23

4.5.3 Coefficient Definition
The coefficients of the IIR filter configuration are defined in the form of signed fixed points (decimal numbers)
with a 1-bit integral part, and the lower 14 bits are the decimal part; they are treated as the coefficient value
divided by 16384.

The coefficient of the sample program should be designed with a value range of -2.0 to 2.0, and the value
obtained by multiplying the fractional coefficient by 16384 (0x4000) should be set as the coefficient definition.
Small numbers less than 1LSB cannot be expressed and will cause operation errors.

Table 4.8 shows examples of decimal, hexadecimal, and decimal correspondence.

Table 4.8 Fixed Point Definition Examples

Fractional number Hexadecimal Decimal
0.6468505859375 0.6468505859375 × 0x4000 = 0x2966 0.6468505859375 × 16384 = 10598
0.6185302734375 0.6185302734375 × 0x4000 = 0x2796 0.6185302734375 × 16384 = 10134
0.14617919921875 0.14617919921875 × 0x4000 = 0x095B 0.14617919921875 × 16384 = 2395
0.0260009765625 0.0260009765625 × 0x4000 = 0x01AA 0.0260009765625 × 16384 = 426
0.15234375 0.15234375 × 0x4000 = 0x09C0 0.15234375 × 16384 = 2496
0.609375 0.609375 × 0x4000 = 0x2700 0.609375 × 16384 = 9984
0.91412353515625 0.91412353515625 × 0x4000 = 0x3A81 0.91412353515625 × 16384 = 14977
0.609375 0.609375 × 0x4000 = 0x2700 0.609375 × 16384 = 9984
0.15234375 0.15234375 × 0x4000 = 0x09C0 0.15234375 × 16384 = 2496

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 54 of 84
Nov.30.23

4.5.4 IIR Filter Configuration Definition
Define the number of taps and coefficients for IIR filters in the iir_config_t type data table.

The number of taps specifies the order of the IIR filter + 1, and the coefficient values of the IIR filter are listed
in the coefficient table as 16-bit signed fixed-point numbers in a coefficient AB set, in the order of coefficient
B then coefficient A, starting from the zero order.

The definition of coefficient A0 is fixed as 0, so only define it as 0.

The number of taps can only be defined within the range of 2 to 5.

When setting the stabilization time, confirm the filter operation within the specified number of taps. If it takes
longer for the filter to stabilize, increase the setting value.

The stabilization time can be set within the range of the number of taps and 255.

Note: Coefficient A is used in the feedback operation of the IIR filter, so depending on the defined value, the
operation result may diverge and prevent normal operation results from being output.
Pay careful attention to the definition of coefficient A to ensure that the IIR filter stabilizes.

Note: Define the coefficient table so that the “sum of coefficient B definitions divided by the sum of
coefficient A definitions” approaches 1.0.
If the “sum of coefficient B definitions divided by the sum of ‘coefficient A definitions +1’” exceeds 1.0,
the measurement result is amplified. If it is less than 1.0, the measurement result is attenuated.

const iir_config_t iir_cfg07 =
{
 .taps = 5,
 .settlings = 5,
 .p_coefficient =
 {
 /* coefficient b,a */
 2496, 0, /* b0 : 0.15234375 , a0 : fixed 0 */
 9984, 10598, /* b1 : 0.609375 , a1 : 0.646850586 */
 14977, 10134, /* b2 : 0.914123535 , a2 : 0.618530273 */
 9984, 2395, /* b3 : 0.609375 , a3 : 0.146179199 */
 2496, 426, /* b4 : 0.15234375 , a4 : 0.026000977 */
 },
};

Specify filter order + 1 as the
number of IIR filter taps.

Define the coefficients for the number of taps in IIR
filters as coefficient AB sets, in the order of coefficient
B then coefficient A.

Coefficient A0 must always be 0.

The stabilization time setting is usually the same as the
number of taps, but if it takes longer for the filter to
stabilize, increase the setting value.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 55 of 84
Nov.30.23

4.5.4.1 Cascaded IIR Filter Configuration
A cascaded IIR filter can be configured by defining several IIR filters.

When defining multiple IIR filters with a filter order of 2, this becomes a common cascaded biquad IIR filter.

filter_config_sample.h

#define CTSU_FILTER_NUM (2)

r_ctsu_iir_sample.h

#define IIR_FILTER_NUM (2)

filter_config_sample.c

const filter_element_config_t g_ctsu_filter_element_config[] =
{
 {
 .type = FILTER_TYPE_IIR,
 .filter_element_cfg = &iir_cfg02,
 },
 {
 .type = FILTER_TYPE_IIR,
 .filter_element_cfg = &iir_cfg03,
 },
};

Specify the filter management and number
of filter stages of the IIR filter.

Continue to specify the configuration
definition of the IIR filter as
cascaded.

The filter listed at the top is applied
first, the filter listed at the bottom is
applied later.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 56 of 84
Nov.30.23

iir_config_sample2.c

const iir_config_t iir_cfg02 =
{
 .taps = 3,
 .settlings = 3,
 .p_coefficient =
 {
 /* coefficient b,a */
 5826, 0, /* b0 : 0.3555908203125 , a0 : fixed 0 */
 0, -12819, /* b1 : 0 , a1 : -0.78240966796875 */
 5826, 6986, /* b2 : 0.3555908203125 , a2 : 0.4263916015625 */
 },
};

const iir_config_t iir_cfg03 =
{
 .taps = 3,
 .settlings = 3,
 .p_coefficient =
 {
 /* coefficient b,a */
 16384, 0, /* b0 : 1 , a0 : fixed 0 */
 0, 12819, /* b1 : 0 , a1 : 0.78240966796875 */
 16384, 6986, /* b2 : 1 , a2 : 0.4263916015625 */
 },
};

Define each IIR filter that will be
cascaded.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 57 of 84
Nov.30.23

5. Median Filters
Median filters can be used to remove pulse noise. The effectiveness of median filters against random noise
and low-period noise is limited, but they can be used in combination with FIR or IIR filters for such cases.

5.1 Operation Explanation
Median filters use the input value and several past samples as a reference period, calculate the median
value, and use the result as the output value of the filter. To refer to past samples, immediately after filter
initialization when the past sample buffer is not filled, the buffer is initialized (0) and the median input value is
output; when the buffer is filled with past data, the median value is output. The filter operation status is
determined by the buffer unfilled response.

Figure 5-1 Median Filter Operation Example (Reference Period = 3)

Table5.1 Median Filter Operation Example (Reference Period = 3

t Input
value

Reference
period (t)

Reference period data
(bold number =
median value)

Output
value

Buffer
unfilled response
(note)

0 6490 0 0, 0, 6490 0 FSP_ERR_BUFFER_
EMPTY 1 6100 0, 1 0, 6490, 6100 6100

2 6250 0, 1, 2 6490, 6100, 6250 6250 FSP_SUCCESS
3 5690 1, 2, 3 6100, 6250, 5690 6100
4 6160 2, 3, 4 6250, 5690, 6160 6160
5 5830 3, 4, 5 5690, 6160, 5830 5830
6 6570 4, 5, 6 6160, 5830, 6570 6160
7 16294 5, 6, 7 5830, 6570, 16294 6570
8 6040 6, 7, 8 6570, 16294, 6040 6570
9 6280 7, 8, 9 16294, 6040, 6280 6280
10 5570 8, 9, 10 6040, 6280, 5570 6040
11 6000 9, 10, 11 6280, 5570, 6000 6000
12 5920 10, 11, 12 5570, 6000, 5920 5920
13 5590 11, 12, 13 6000, 5920, 5590 5920
14 6210 12, 13, 14 5920, 5590, 6210 5920
15 6320 13, 14, 15 5590, 6210, 6320 6210
16 6020 14, 15, 16 6210, 6320, 6020 6210
17 5590 15, 16, 17 6320, 6020, 5590 6020

Note: Median filter processing API response. For details, refer to 5.4.2 r_ctsu_median_filter.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Input

Output

Outputs the median value of the
reference period including the latest
input value.

Reference
period

Filter initialization

Buffer filling
complete

Impulse noise

Value

t

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 58 of 84
Nov.30.23

5.2 Specifications
Table 5.2 lists the specifications for median filters used in the sample program.

Table 5.2 Median Filter Specifications

Item Specification Remarks
Input data type Signed 32-bit integer type CTSU driver measurement data is

unsigned 16-bit integer type, so
data type conversion is required.
This sample software performs
data type conversion in the
software filter API.

Output data type Signed 32-bit integer type

Sample reference range 3, 5, 7, 9 Total number of input values and
past samples

Processing method Median detection with
insertion sort

Output results after filter
initialization

Returns operation results
during filter stabilization time
and buffer unfilled response

Any sample reference period can
be specified as the filter
stabilization time in the
configuration definition.

5.3 List of Data for Median Filters
This section explains the constants and global variables prepared for use with median filters. Data definitions
such as constants and global variables that are common to the software filter sample code are required
when using median filters. For details regarding data definitions common to the software filter sample code,
refer to 2.3 Data List for Filter Configuration Definition.

5.3.1 Constants
Table 5.3 lists the median filter constants used in the sample program.

Table 5.3 Constants for Median Filters

Constant name Setting value Description
File name: r_ctsu_median_sample.h
MEDIAN_FILTER_NUM 1 Number of median filter configurations

Change the setting value when defining
multiple median filter configurations and
using them based on the touch
configuration.

File name: r_ctsu_median_sample.c
MEDIAN_SAMPLE_SIZE_MAX 9 Maximum sample reference time

Change this setting if using a system
where the touch measurement
sampling period is shorter than this
sample program and 11 or more
sample reference periods are
necessary.

MEDIAN_FILTER_SIZE MEDIAN_FILTER_NUM
×
FILTER_ELEMENT_SIZE

Median filter buffer size
(calculated from the number of median
filter stages and the number of
measurement results)
“FILTER_ELEMENT_SIZE”: refer to
Table 2.2 Constants for Filter
Configuration Definitions for details.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 59 of 84
Nov.30.23

5.3.2 Global Variables
Table 5.4 lists the global variables used in the sample program.

The variables are initialized and updated using the median filter initialization process.

Table 5.4 Global Variables Median Filters

Variable name Type Description
File name: r_ctsu_median_sample.c
g_ctsu_median_element_index uint16_t Buffer allocation management index
g_ctsu_median_ctrl[MEDIAN_FILT
ER_SIZE]

median_ctrl_t Median filter management data
Buffer size is number of pins (number
of self-capacitance electrodes +
number of mutual-capacitance
electrodes x 2) x number of median
filter stages.
※Number of mutual-capacitance
electrodes = number of transmitting
pins × number of receiving pins

gp_ctsu_median_ctrl median_ctrl_t * Position pointer at time of median filter
management data allocation

g_ctsu_median_buffer[MEDIAN_FI
LTER_SIZE][MEDIAN_SAMPLE_S
IZE_MAX]

int32_t Median filter sample buffer
Buffer size is number of pins (number
of self-capacitance electrodes +
number of mutual-capacitance
electrodes x 2) x maximum sample
reference period (9)
※Number of mutual-capacitance
electrodes = number of transmitting
pins × number of receiving pins

g_ctsu_median_work[MEDIAN_SA
MPLE_SIZE_MAX]

int32_t Sorting processing temporary buffer
Buffer size is maximum sample
reference period (9)

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 60 of 84
Nov.30.23

5.3.3 Structures
The following shows the structure for accessing the median filter APIs and the structures for defining the
median filter configuration.

Table 5.5 Filter Structure Definitions

Definition content Data type Remarks
Median filter
configuration definition

median_config_t

Median filter
management data

median_ctrl_t

5.3.3.1 Median filter configuration definition (median_config_t)
Table 5.6 Median Filter Configuration Definition Structure (median_config_t)

Member Data type Description
samples uint16_t Sample reference period

Only odd numbers within the maximum
sample reference period (9) samples can
be specified.

• Example description of median filter configuration definition (median_config_t)
const median_config_t median_cfg02 =
{
 .samples = 5,
};

5.3.3.2 Median filter management data (median_ctrl_t)
Table 5.7 Median Filter Management Data (median_ctrl_t)

Member Data type Description
index uint16_t Median filter sampling buffer input data

storage location
count uint16_t Buffer filling counter
p_buffer int32_t * Median filter sampling buffer pointer
p_cfg median_config_t * Median filter configuration definition

pointer

5.4 Median Filter APIs
This section explains the APIs prepared for use with median filters. APIs that are common to the sample
software filter sample code are required when using median filters. For details regarding APIs common to the
software filter sample code, refer to 2.4 Software Filter APIs.

Table5.8 lists the median filter APIs included in the sample program.

Table5.8 Median Filter APIs

Function name Process description
Filter name: r_ctsu_median_sample.c
r_ctsu_median_open Median filter initialization process
r_ctsu_median_filter Median filter execution process
ctsu_insert_sort Insert sorting process

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 61 of 84
Nov.30.23

5.4.1 r_ctsu_median_open
This function allocates and initializes the buffer for median filter processing. This function must be executed
before using any other median filter API functions.

Before executing this function, make sure to set a pointer to the median filter management data by
referencing the median filter management data allocation position pointer.

This function must be executed the number of times the measurement result data is read by the CTSU driver
for each touch interface. (For self-capacitance method, this is the number of pins, for mutual capacitance
method, this is "the number of transmitting pins x the number of receiving pins x 2.”)

Refer to the filter initialization API (r_ctsu_filter_open) description for more details.

Format

fsp_err_t r_ctsu_median_open(median_ctrl_t * const p_ctrl , median_config_t const * const p_cfg);

Parameters

p_ctrl

Median filter management data pointer

Sets the median filter management data allocation position pointer (gp_ctsu_median_ctrl).

The first pointer position for each touch configuration must be retained because the median filter
management data allocation position pointer (gp_ctsu_median_ctrl) is updated each time this API is
executed.

p_cfg

Median filter configuration definition pointer

In this software, the function specifies the source median filter configuration definition for the median
filter sample preset.

ReturnValues

FSP_SUCCESS /* Successfully completed. */

FSP_ERR_ASSERTION /* Argument pointer not specified. */

FSP_ERR_INVALID_ARGUMENT /* Configuration parameters are invalid. */

Properties

Protype is declared in r_ctsu_median_sample.h.

Description

This function allocates and initializes the buffer for median filter processing of 1 measurement result.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 62 of 84
Nov.30.23

5.4.2 r_ctsu_median_filter
This function applies the median filter operations on one measurement result.

It returns the buffer unfilled response until the filter stabilization time elapses.

Until the filter stabilization time elapses, the filter application result is the calculation result when the unfilled
range is in the initialized state (0).

Format

fsp_err_t r_ctsu_median_filter(median_ctrl_t * const p_ctrl , int32_t *p_data);

Parameters

p_ctrl

Median filter management data pointer

p_data

Median filter application measurement result data pointer

ReturnValues

FSP_SUCCESS /* Successfully completed. */

FSP_ERR_ASSERTION /* Argument pointer not specified. */

FSP_ERR_INVALID_ARGUMENT /* Configuration parameters are invalid. */

FSP_ERR_BUFFER_EMPTY /* Some filters are not yet applied because buffer is unfilled. */

Properties

Protype is declared in r_ctsu_median_sample.h。

Description

This function applies the median filter processing on one measurement result.

When data in the signed 13-bit integer range (1073741823 to -1073741824) or higher is passed as
measurement value data, the operation is performed as if the upper or lower limit value was entered.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 63 of 84
Nov.30.23

Figure 5-2 Median Filter Execution API Flowchart

Figure 5-3 Median Filter Data Flowchart

MEDIAN filter
r_ctsu_median_filter

response of apply filter

buffering completed

response of buffering incomplete

no

yes

Calculate MEDIAN filter

buffering

copy buffer to temporary

sort temporary data

data buffering
r_ctsu_median_filter

Calculation of MEDIAN filter
r_ctsu_median_filter

copy data

Apply filter

Write measurement result
R_CTSU_DataInsert

Read measured values
R_CTSU_DataGet

Input measurement value

Data buffer for reading
measurement result

g_filter_buffer

MEDIAN filter buffers
g_ctsu_median_buffer

temporary buffer for sorting
g_ctsu_median_work

data sorting
ctsu_insert_sort

sorting

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 64 of 84
Nov.30.23

5.4.1 ctsu_insert_sort
This function sorts the specified data by value.

Format

static void ctsu_insert_sort(int32_t * list , uint16_t size);

Parameters

p_list

Specified sorting data pointer

size

Number of data to be sorted

ReturnValues

Note

Properties

Protype is declared in r_ctsu_median_sample.c.

Description

This function sorts the specified data in ascending order.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 65 of 84
Nov.30.23

5.5 Usage Example
5.5.1 Program Implementation Example
Touch_filter_sample_source \ touch_filter_median \ filter_sample \r_ctsu_filter_sample.c

#include "r_ctsu_filter_sample.h"
#include "r_ctsu_fir_sample.h"
#include "r_ctsu_iir_sample.h"
#include "filter_config_sample.h"
#include "r_ctsu.h"

～～

#if (MEDIAN_FILTER_ENABLE == 1)
static fsp_err_t ctsu_median_filter_open (filter_element_ctrl_t * p_ctrl,
filter_ctrl_t const * const p_cfg)
{
 filter_element_ctrl_t * p_element_ctrl = (filter_element_ctrl_t *) p_ctrl;
 fsp_err_t ret = FSP_SUCCESS;
 median_ctrl_t * p_median_ctrl;
 median_config_t * p_median_cfg;
 uint16_t element_id = 0;

 p_median_cfg = (median_config_t *)p_cfg;
 p_element_ctrl->p_filter_ctrl = gp_ctsu_median_ctrl;
 for (element_id = 0; element_id < p_element_ctrl->element_num;
element_id++)
 {
 p_median_ctrl = (median_ctrl_t *)p_element_ctrl->p_filter_ctrl;
 ret = r_ctsu_median_open(&p_median_ctrl[element_id], p_median_cfg);
 if (ret != FSP_SUCCESS)
 {
 return ret;
 }
 }

 return ret;
}
#endif

～～

#if (MEDIAN_FILTER_ENABLE == 1)
 /* Apply MEDIAN filter */
 if (p_instance_ctrl->p_cfg->p_filter_cfg[filter_id].type ==
FILTER_TYPE_MEDIAN)
 {
 p_median_ctrl = (median_ctrl_t *)p_instance_ctrl-
>p_element_ctrl[filter_id].p_filter_ctrl;
 filter_err = r_ctsu_median_filter(&p_median_ctrl[element_id],
&filter_data);
 if (FSP_SUCCESS != filter_err)
 {
 ret = filter_err;
 }
 }
#endif

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 66 of 84
Nov.30.23

5.5.2 Filter Adjustment Procedure
In this sample program, you can specify the filter characteristics with a conditional compilation.

To do so, change the sample reference period specification of the media filter configuration and then adjust
the filter characteristics.

5.5.2.1 Filter Processing Method
The median filter processing method samples and sorts the measurement results, and then calculates the
median value, so the larger number of samplings the long processing time.

For details regarding the data size and processing time, refer to Table 2.13 and Table 2.14.

Figure 5-4 Figure 5-4 shows the block diagram of the median filter.

Figure 5-4 Median Filter Block Diagram

Input
（measured value）

Input data
1 time before

Input data
2 time before

Input data
n time before

minimum data (n/2) th data maximum data

sorting

Output
（Filtered result）

Current input
data

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 67 of 84
Nov.30.23

5.5.3 Filter Characteristics
This sample program can handle from 3 to 9 orders in the sample reference period.

Table 5.9 lists the definition of the specified characteristics of the sample median filter. Table 5.10 lists the
filter configuration definitions.

Table 5.9 Sample Median Filter Specification

File Definition name Description
r_ctsu_median_sample.h MEDIAN_PRESET_TYPE Sample preset specification for use with median

filters

Table 5.10 Sample Median Filter Configuration Definitions

 MEDIAN_PRESET_TYPE_1 MEDIAN_PRESET_TYPE_2
Sample reference
period

3 5

Noise removal width 1(20ms) 2(40ms)
Detection delay 1(20ms) 2(40ms)

5.5.3.1 Removeable noise width
A median filter removes noise signals that are equal to or less than the “sampling period” × “noise removal
width”.

The “noise removal width” is calculated as ((sample reference period - 1) ÷ 2), and a noise signal that
exceeds the “sampling period” × “noise removal width” will take a signal shape in which the signal
corresponding to the “noise removal width” has been removed.

The sample program’s preset specification targets a noise removal width 1 or 2, so if you want to remove a
noise signal with a wider width, refer to 5.3.3.1 Median filter configuration definition (median_config_t) and
set the sample reference period to 7 or more.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 68 of 84
Nov.30.23

• Noise signals with a signal width of 20ms (noise width 1) are

removed by either Preset 1 (sample reference period = 3) or
Preset 2 (sample reference range = 5).

• A noise signal with a signal width of 40ms (noise width 2) has
a shape in which one point (65535) at the peak of the signall
is removed in Preset 1 (sample reference period = 3), and is
removed in Preset 2 (sample reference period = 5).

• A noise signal with a signal width of 60ms (noise width 3) has
a shape in which one point (65535) at the peak of the signal
is removed in Preset 1(sample reference period = 3), and a
shape in which 2 points (65535, 40000) in the peak of the
signal are removed in Preset 2 (sample reference period =
5).

Noise width 1 (20ms):

Measure-
ment
value

Filter result
PRESET1 PRESET2

6000 6000 6000
6000 6000 6000
6000 6000 6000
6000 6000 6000
65536 6000 6000
6000 6000 6000
6000 6000 6000
6000 6000 6000

Noise width 2 (40ms):

Meausre-
ment
value

Filter result
PRESET 1 PRESET 2

6000 6000 6000
6000 6000 6000
6000 6000 6000
6000 6000 6000
40000 6000 6000
65536 40000 6000
6000 40000 6000
6000 6000 6000
6000 6000 6000

Noise width 3 (60ms):

Measure-
ment
value

Filter result
PRESET 1 PRESET 2

6000 6000 6000
6000 6000 6000
6000 6000 6000
6000 6000 6000
40000 6000 6000
65536 40000 6000
30000 40000 30000
6000 30000 30000
6000 6000 30000
6000 6000 6000

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 69 of 84
Nov.30.23

5.5.3.2 Detection delay
The median filter removes noise signals by sampling touch measurement values, causing a delay in normal
touch detection.

The touch detection delay time is the same as the removable noise width (sampling period x noise removal
width).

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 70 of 84
Nov.30.23

6. How to use This Sample Project
6.1 Sample Filter Program
6.1.1 Procedure for Integration into an Existing Project
To incorporate FIR filters into an existing capacitive touch application, proceed as follows:

To incorporate IIR filters, replace the folder names, filter names etc. with those belonging to the IIR folder
before executing the procedure.

1. Copy the filter_sample folder in Touch_filter_sample_source/touch_filter_fir folder to the target project.

2. Open "C/C++Project Settings" in the menu project and go to Paths and Symbols under C/C++ General.
Add the filter_sample folder to “Include” and “Source Locations."

Figure 6-1 Embedding a Sample Program in an Existing Environment

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 71 of 84
Nov.30.23

3. Add filter configuration definitions to match the number of methods in the touch interface configuration of
the embedded environment.
Check the qe_touch_config.c file, and add the data definition of the ctsu_filter_instance_t type and the
data of the filter_ctrl_t type of the filter_config_sample.c file so that the number is equal to the data
definition of the touch_instance_t type.

Touch Interface
configuration 1

Touch Interface
configuration 2

Filter configuration
 for touch interface 1

Filter configuration
for touch interface 3

Touch Interface
configuration 3

Filter configuration
for touch interface 3

Filter configuration
defines the same number

as Touch Interface

Figure 6-2 Adding Filter Configuration Definitions

• Description example of filter configuration definitions
qe_touch_config.c

touch_instance_ctrl_t g_qe_touch_ctrl_config01;
const touch_instance_t g_qe_touch_instance_config01 =

(Omitted)

touch_instance_ctrl_t g_qe_touch_ctrl_config02;
const touch_instance_t g_qe_touch_instance_config02 =

(Omitted)

touch_instance_ctrl_t g_qe_touch_ctrl_config03;
const touch_instance_t g_qe_touch_instance_config03 =

filter_config_sample.c

filter_instance_ctrl_t g_ctsu_filter_control01;
const ctsu_filter_instance_t g_ctsu_filter_instance01 =

(Omitted)

filter_instance_ctrl_t g_ctsu_filter_control02;
const ctsu_filter_instance_t g_ctsu_filter_instance02 =

(Omitted)

filter_instance_ctrl_t g_ctsu_filter_control03;
const ctsu_filter_instance_t g_ctsu_filter_instance03 =

Match the number of
configuration definitions

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 72 of 84
Nov.30.23

4. Modify the filter configuration definition in filter_config_sample.c according to your environment and
specify the filter to be applied. (See section 2.3.4).)
For FIR filters, you can specify filter characteristics from a 4-pattern sample preset in the conditional
compilation FIR_PRESET_TYPE.

Specify the Preset
type FIR filter Preset 1

FIR filter Preset 2

FIR filter Preset 3

FIR filter Preset 4

Enable specified preset data

Figure 6-3 FIR Filter Specification

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 73 of 84
Nov.30.23

Example definition of FIR filter preset specification
r_ctsu_fir_sample.h

#define FIR_FILTER_ENABLE (1)

#define FIR_FILTER_TYPE_DIRECT (0)
#define FIR_FILTER_TYPE_TRANSPOSE (1)
#define FIR_FILTER_TYPE FIR_FILTER_TYPE_DIRECT

#if (FIR_FILTER_ENABLE == 1)
#define FIR_PRESET_TYPE_1 (1)

#define FIR_PRESET_TYPE_2 (2)

#define FIR_PRESET_TYPE_3 (3)

#define FIR_PRESET_TYPE_4 (4)

#define FIR_PRESET_TYPE FIR_PRESET_TYPE_1
#define FIR_FILTER_NUM (1)
#else
#define FIR_PRESET_TYPE (0)
#endif

filter_config_sample.c

const filter_element_config_t g_ctsu_filter_element_config[] =
{
#if (FIR_PRESET_TYPE == FIR_PRESET_TYPE_1)
 {
 .type = FILTER_TYPE_FIR,
 . filter_element_cfg = &fir_cfg01,
 },
#endif
#if (FIR_PRESET_TYPE == FIR_PRESET_TYPE_2)
 {
 .type = FILTER_TYPE_FIR,
 . filter_element_cfg = &fir_cfg02,
 },
#endif

(Omittted)

};

Use the specified
sample presets.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 74 of 84
Nov.30.23

5. Include the filter_config_sample.h file in the qe_touch_sample.c file (or equivalent file) and add a

description of how to perform filtering (see Section 5.5).
[Note] 1. Note that data reading and data writing back for filter processing occur in the CTSU drivers, not in

the touch API.
 2. Note that the description of performing the filtering is required for each method of the Touch

Interface configuration.

6. Change the num_moving_average setting of CTSU driver configuration definition (g_qe_ctsu_ctrl_XXX for
QE for Capacitive Touch generation) in the qe_touch_config.c file (or equivalent file) to 1 to disable the
default moving averaging. No changes are required when using the default moving averaging with FIR
filters.
If there are multiple touch interface configuration methods, change the CTSU driver configuration
definition for all methods.

Const ctsu_cfg_t g_qe_ctsu_cfg_config01 =
{
(Omitted)
 .num_moving_average = 1,
 .tunning_enable = true,
 .p_callback = &qe_touch_callback,
(Omitted)
};

Ctsu_instance_ctrl_t g_qe_ctsu_ctrl_config01;

Const ctsu_instance_t g_qe_ctsu_instance_config01 =
{
 .p_ctrl = &g_qe_ctsu_ctrl_config01,
 .p_cfg = &g_qe_ctsu_cfg_config01,
 .p_api = &g_ctsu_on_ctsu,
};

Change to 1

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 75 of 84
Nov.30.23

Const ctsu_cfg_t g_qe_ctsu_cfg_config02 =
{
(Omitted)
 .num_moving_average = 1,
 .tunning_enable = true,
 .p_callback = &qe_touch_callback,
(Omitted)
};

Ctsu_instance_ctrl_t g_qe_ctsu_ctrl_config02;

Const ctsu_instance_t g_qe_ctsu_instance_config02 =
{
 .p_ctrl = &g_qe_ctsu_ctrl_config02,
 .p_cfg = &g_qe_ctsu_cfg_config02,
 .p_api = &g_ctsu_on_ctsu,
};
Const ctsu_cfg_t g_qe_ctsu_cfg_config03 =
{
(Omitted)
 .num_moving_average = 1,
 .tunning_enable = true,
 .p_callback = &qe_touch_callback,
(Omitted)
};

Ctsu_instance_ctrl_t g_qe_ctsu_ctrl_config03;

Const ctsu_instance_t g_qe_ctsu_instance_config03 =
{
 .p_ctrl = &g_qe_ctsu_ctrl_config03,
 .p_cfg = &g_qe_ctsu_cfg_config03,
 .p_api = &g_ctsu_on_ctsu,
};

Change to 1

Change to 1

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 76 of 84
Nov.30.23

6.1.2 Sample Application Configuration and Operation
The flowchart for incorporating a filter sample program into the sample code (qe_touch_sample.c) outputted
by QE for Capacitive Touch is shown below. This sample program shows three touch interface
configurations (methods).

①Initialize touch and filter module

②Touch measurement

③Read touch state
 with filter applied

qe_touch_main

Initialize touch module
RM_TOUCH_Open

Touch measurement start
RM_TOUCH_ScanStart

Read measured values
R_CTSU_DataGet

Write back filtered data
R_CTSU_DataInsert

Apply filter
r_ctsu_filter_exec

Initialize filter module
r_ctsu_filter_open

Measurement completed

no

Software wait
R_BSP_SoftwareDelay

②Touch measurement(Method 1)

①Initialize touch and filter module
(Method 1)

②Touch measurement(Method 2)

②Touch measurement(Method 3)

Read touch status
RM_TOUCH_DataGet

①Initialize touch and filter module
(Method 2)

①Initialize touch and filter module
(Method 3)

③Read touch state
 with filter applied(Method 1)

③Read touch state
 with filter applied(Method 2)

③Read touch state
 with filter applied(Method 3)

Figure 6-4 Sample Application Flowchart

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 77 of 84
Nov.30.23

This section describes the numbers indicated in Figure 5.5

① Initialize the touch functions and filter
Initializes the touch function and initializes the filter.
To initialize the filter, check the touch interface configuration and specify the corresponding CTSU driver
configuration definition for the respective method.

 /* Open Touch middleware */
 err = RM_TOUCH_Open(p_touch_instance->p_ctrl, p_touch_instance->p_cfg);
 if (FSP_SUCCESS == err)
 {
 /* Open filter sample software */
 err = r_ctsu_filter_open(p_filter_instance->p_ctrl, p_filter_instance->p_cfg,
p_ctsc_instance->p_cfg);
 }

② Touch measurement
Perform touch measurement and wait for measurement to be completed.
② to ③ should be executed consecutively for each method of the touch interface configuration.

③ Touch input stats after filter application
Use the CTSU driver API to get the measurement result, write it back to the CTSU driver after applying
the filter, and then get the touch input information using the filtered data.
The data buffer is required for data transfer between the CTSU driver and the filter function.
② to ③ should be executed consecutively for each method of the touch interface configuration.
For details of the CTSU driver API, refer to v4.3.0 or later of Renesas Flexible Software Package (FSP)
User's Manual (R11UM0155).

 /* Use filter sample software */
 err = R_CTSU_DataGet(p_ctsc_instance->p_ctrl, g_filter_buffer);
 if (FSP_SUCCESS == err)
 {
 err = r_ctsu_filter_exec(p_filter_instance->p_ctrl, g_filter_buffer);
 if (FSP_SUCCESS == err)
 {
 R_CTSU_DataInsert(p_ctsc_instance->p_ctrl, g_filter_buffer);
 err = RM_TOUCH_DataGet(p_touch_ctrl, p_button_status, p_slider_position,
p_wheel_position);
 }
 }

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 78 of 84
Nov.30.23

6.2 Example Project Integrating Filter Sample Program
This section explains the operation of the sample project (ra2l1_rssk_filter_sample) that applies the software
filter sample program to the RA2L1 Capacitive Touch Evaluation System Example Project.

6.2.1 Function
The functions are shown below.

 Applies a software filter to the measurement results of all touch electrodes on the self-capacitance
electrode board.

 When the touch electrodes of the self-capacitance electrode board are touched, the corresponding
LED lights.

 You can use the serial monitoring function of QE for Capacitive Touch to check the measurement
with the software filter applied.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 79 of 84
Nov.30.23

6.2.2 File Structure
This section explains the file structure of the sample project.

The project configuration file and FSP Configuration generation file of the development environment are
omitted.

Differences from Example Project are shown in bold. For more information on unchanged files, refer to
“RA2L1 Group Capacitive Touch Evaluation System Example Project” (R20AN0595).

ra2l1_rssk_filter_sample
│
├─QE-Touch
│ ├ qe_tuning20230221103059.log ・・・QE Tuning Log
│ └ quickstart_rssk_ra2l1_ep.tifcfg ・・・Touch Interface Configuration File
│
├─qe_gen
│ ├ qe_touch_config.c ・・・Touch Configuration Source
│ ├ qe_touch_config.h ・・・Touch Configuration Header
│ ├ qe_touch_define.h ・・・Touch Definition Header
│ └ qe_touch_sample.c ・・・Touch Sample Application
│
├─src
│ ├ hal_entry.c ・・・main Files
│ ├ r_rssk_switch_led.c ・・・Switch and LED Processing Header
│ ├ r_rssk_switch_led.h ・・・Switch and LED Processing Header
│ ├ r_rssk_touch_led.c ・・・Touch Electrode LED Processing Header
│ └ r_rssk_touch_led.h ・・・Touch Electrode LED Processing Header
│
└─filter_sample
 ├ filter_config_sample.c ・・・Filter Configuration Definition Source
 ├ filter_config_sample.h ・・・Filter Configuration Definition Header
 ├ fir_config_sample1.c ・・・FIR Filter Sample Preset 1 Source
 ├ fir_config_sample2.c ・・・FIR Filter Sample Preset 2 Source
 ├ fir_config_sample3.c ・・・FIR Filter Sample Preset 3 Source
 ├ fir_config_sample4.c ・・・FIR Filter Sample Preset 4 Source
 ├ iir_config_sample1.c ・・・IIR Filter Sample Preset 1 Source
 ├ iir_config_sample2.c ・・・IIR Filter Sample Preset 2 Source
 ├ iir_config_sample3.c ・・・IIR Filter Sample Preset 3 Source
 ├ iir_config_sample4.c ・・・IIR Filter Sample Preset 4 Source
 ├ iir_config_sample5.c ・・・IIR Filter Sample Preset 5 Source
 ├ iir_config_sample6.c ・・・IIR Filter Sample Preset 6 Source
 ├ median_config_sample1.c ・・・Median Filter Sample Preset 1 Source

 ├ median_config_sample2.c ・・・Median Filter Sample Preset 2 Source

├ r_ctsu_filter_sample.c ・・・Filter Processing Source
 ├ r_ctsu_filter_sample.h ・・・Filter Processing Header
 ├ r_ctsu_fir_sample.c ・・・FIR filter Processing Source

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 80 of 84
Nov.30.23

 └ r_ctsu_fir_sample.h ・・・FIR filter Processing Header
 ├ r_ctsu_iir_sample.c ・・・IIR filter Processing Source
 └ r_ctsu_iir_sample.h ・・・IIR Filter Processing Header
 ├ r_ctsu_median_sample.c ・・・Median Filter Processing Source
 └ r_ctsu_median_sample.h ・・・Median Filter Processing Header

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 81 of 84
Nov.30.23

6.2.3 How to Import the Sample Project
Import the "ra2l1_rssk_filter_sample" folder attached to this sample code into your workspace using the
e2studio import function.

Figure 6-5 shows how to import a sample project.

For operations after import, refer to “RA2L1 Group Capacitive Touch Evaluation System Quick Start Guide
(Q12QS0040).”

Figure 6-5 Importing the Sample Project

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 82 of 84
Nov.30.23

6.2.4 How to Change the Filter Configuration and Preset
For details on how to change the appropriate filter configuration (type) in the sample project, refer to Table
2.2 Constants for Filter Configuration Definitions.

To change the FIR Filter preset, refer to Table 3.6 Sample FIR Filters Specification.

To change the IIR filter preset, refer to Table 4.5 Sample IIR Filter Specification.

To change the median filter preset, refer to Table 5.9 Sample Median Filter Specification.

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 83 of 84
Nov.30.23

7. Supporting Documentation
• Capacitive Sensor MCU Capacitive Touch Noise Immunity Guide (R30AN0426)
• Renesas RA Family RA2L1 Group Capacitive Touch Evaluation System Quick Start Guide (Q12QS0040)
• RA Family Using QE and FSP to Develop Capacitive Touch Applications (R01AN4934)

Renesas Website and Support Desk

Renesas Electronics Website

https://www.renesas.com/

Capacitive Touch Sensor Unit (CTSU) related links

https://www.renesas.com/rssk-touch-ra2l1

https://www.renesas.com/qe-capacitive-tou ch

Renesas Support Desk

https://www.renesas.com/support

https://www.renesas.com/node/25428131
https://www.renesas.com/node/1403601
https://www.renesas.com/node/1289806
https://www.renesas.com/
https://www.renesas.com/rssk-touch-ra2l1
https://www.renesas.com/qe-capacitive-tou%20ch
https://www.renesas.com/support

RA family Capacitive Touch Software Filter Sample Program

R30AN0427EJ0300 Rev.3.00 Page 84 of 84
Nov.30.23

Revision History

Rev. Date
Description
Page Summary

1.00 Jun.12.23 - First edition issued
2.00 Aug.31.23 Overall restructure of document

Added “Section 4. IIR Filters”
Added IIR filter-related items to folder structure in Section 1.1
Corrected Figure 2.1
Added IIR filter-related items to file structure in Section 2.2
Corrected remarks regarding coefficient data type in Table 3.1
Corrected mistakes in Section 3.5.4
Added IIR filter-related items to Section

3.00 Nov.30.23 4

5
6
7
8

9
10
13
19
24
24
26
28
28
31
45
49
57
70

Added median filters related items to the folder structure in
Section 1.1
Updated Table 1.1 (Operation Confirmation Conditions)
Deleted description of planned functions from Section 2
Updated Table 2.1 (List of Components)
Added items related to median filters to the file structure and
added folder descriptions in Section 2.2
Added valid/invalid definitions to each filter in Table 2.2
Added median filters to Table 2.3
Added median filters to Table 2.12
Added median filters to Figure 2.5
Added median filters to Section 2.4.6
Added median filter initialization setting API to Section 2.4.6
Added median filter special note to Section 2.4.7
Added data size and incremental amount to Table 2.13
Updated filter processing execution time in Table 2.14
Corrected information in Section 3.3.1
Corrected information in Section 4.3.1
Corrected information in Table 4.4
Added Section 5 (Median Filters)
Revised structure of Section 6

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Folder Structure
	1.2 Operation Confirmation Conditions
	1.3 Correspondence Between Sample Code and Application Note

	2. Software Specifications
	2.1 Software Configuration Diagram
	2.2 File Structures
	2.3 Data List for Filter Configuration Definition
	2.3.1 Constants
	2.3.2 EnumerationsTable 2
	2.3.3 Global VariablesTable 2
	2.3.4 Structures
	2.3.4.1 Definition for touch module and filter module access (filtering_instance_t)
	2.3.4.2 Filter management definition (ctsu_filter_instance_t)
	2.3.4.3 Filter management data (filter_instance_ctrl_t)
	2.3.4.4 Filter individual management data (filter_element_ctrl_t)
	2.3.4.5 Filter configuration definition (filter_config_t)
	2.3.4.6 Filter content definition (filter_element_config_t)

	2.4 Software Filter APIs
	2.4.1 r_rssk_filter_initialize
	2.4.2 r_rssk_filter_dataget
	2.4.3 r_ctsu_filter_open
	2.4.4 ctsu_fir_filter_open
	2.4.5 ctsu_iir_filter_open
	2.4.6 ctsu_median_filter_open
	2.4.7 r_ctsu_filter_exec

	2.5 Size and Execution Time

	3. FIR Filters
	3.1 Specifications
	3.2 How to Use the Filter in This Sample Program
	3.3 FIR Filter API
	3.3.1 r_ctsu_fir_open
	3.3.2 r_ctsu_fir_filter
	3.3.3 r_ctsu_fir_direct_filter
	3.3.4 r_ctsu_fir_transpose_filter

	3.4 List of Data for FIR Filters
	3.4.1 Constants
	3.4.2 Global Variables

	3.5 Filter Adjustment Procedure
	3.5.1 Filter Processing Method
	3.5.2 Filter Characteristics
	3.5.3 Coefficient Definitions
	3.5.4 FIR Filter Configuration Definition

	4. IIR Filters
	4.1 Specifications
	4.2 How to Use the IIR Filter in This Sample Program
	4.3 IIR Filter API
	4.3.1 r_ctsu_iir_open
	4.3.2 r_ctsu_iir_filter

	4.4 List of Data for IIR Filters
	4.4.1 Constants
	4.4.2 Global Variables

	4.5 Filter Adjustment Procedure
	4.5.1 Filter Processing Method
	4.5.2 Filter Characteristics
	4.5.3 Coefficient Definition
	4.5.4 IIR Filter Configuration Definition
	4.5.4.1 Cascaded IIR Filter Configuration

	5. Median Filters
	5.1 Operation Explanation
	5.2 Specifications
	5.3 List of Data for Median Filters
	5.3.1 Constants
	5.3.2 Global Variables
	5.3.3 Structures
	5.3.3.1 Median filter configuration definition (median_config_t)
	5.3.3.2 Median filter management data (median_ctrl_t)

	5.4 Median Filter APIs
	5.4.1 r_ctsu_median_open
	5.4.2 r_ctsu_median_filter
	5.4.1 ctsu_insert_sort

	5.5 Usage Example
	5.5.1 Program Implementation Example
	5.5.2 Filter Adjustment Procedure
	5.5.2.1 Filter Processing Method

	5.5.3 Filter Characteristics
	5.5.3.1 Removeable noise width
	5.5.3.2 Detection delay

	6. How to use This Sample Project
	6.1 Sample Filter Program
	6.1.1 Procedure for Integration into an Existing Project
	6.1.2 Sample Application Configuration and Operation

	6.2 Example Project Integrating Filter Sample Program
	6.2.1 Function
	6.2.2 File Structure
	6.2.3 How to Import the Sample Project
	6.2.4 How to Change the Filter Configuration and Preset

	7. Supporting Documentation
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Corporate Headquarters
	Contact information
	Trademarks
	Word のしおり
	lastpage

