

QUICKSWITCH[®] PRODUCTS 2.5V / 3.3V DUAL 4:1 MUX/DEMUX HIGH BANDWIDTH BUS SWITCH

DESCRIPTION:

high impedance at the terminals.

mance communication applications.

The QS3VH253 HotSwitch Dual 4:1 multiplexer/demultiplexer is a high

bandwidth bus switch. The QS3VH253 has very low ON resistance,

resulting in under 250ps propagation delay through the switch. The Select

(Sx) inputs control the data flow. The multiplexers/demultiplexers are

enabled when the Enable (EA, EB) inputs are low. In the ON state, the

switches can pass signals up to 5V. In the OFF state, the switches offer very

The combination of near-zero propagation delay, high OFF impedance,

and over-voltage tolerance makes the QS3VH253 ideal for high perfor-

The QS3VH253 is characterized for operation from -40°C to +85°C.


FEATURES:

- N channel FET switches with no parasitic diode to Vcc
 - Isolation under power-off conditions
 - No DC path to Vcc or GND
 - 5V tolerant in OFF and ON state
- 5V tolerant I/Os
- Low Ron 4Ω typical
- · Flat Row characteristics over operating range
- Rail-to-rail switching 0 5V
- Bidirectional dataflow with near-zero delay: no added ground bounce
- Excellent Ron matching between channels
- Vcc operation: 2.3V to 3.6V
- High bandwidth up to 500MHz
- LVTTL-compatible control Inputs
- · Undershoot Clamp Diodes on all switch and control Inputs
- Low I/O capacitance, 4pF typical
- Available in QSOP and TSSOP packages

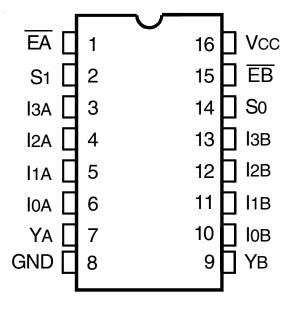
APPLICATIONS:

- · Hot-swapping
- · Multiplexing/demultiplexing
- · Low distortion analog switch
- Replaces mechanical relay
- ATM 25/155 switching

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE


FEBRUARY 2014

© 2019 Renesas Electronics Corporation

IDTQS3VH253 2.5V / 3.3V DUAL 4:1 MUX/DEMUX HIGH BANDWIDTH BUS SWITCH

INDUSTRIAL TEMPERATURE

PIN CONFIGURATION

QSOP/ TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	SupplyVoltage to Ground	-0.5 to +4.6	V
VTERM ⁽³⁾	DC Switch Voltage Vs	-0.5 to +5.5	V
VTERM ⁽³⁾	DC Input Voltage VIN	–0.5 to +5.5	V
VAC	AC Input Voltage (pulse width ≤20ns)	-3	V
Ιουτ	DC Output Current (max. sink current/pin)	120	mA
Tstg	Storage Temperature	-65 to +150	°C

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc .

CAPACITANCE (TA = +25°C, F = 1MHz, VIN = 0V, VOUT =

0 S∕y mbol	Parameter ⁽¹⁾		Тур.	Max.	Unit
CIN	Control Inputs		3	5	pF
Ci/o	Quickswitch Channels	Demux	4	6	pF
	(Switch OFF)	Mux	11	15	
Ci/o	Quickswitch Channels	Demux	12	16	pF
	(Switch ON)	Mux	12	16	

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	I/O	Description	
lxx	I	Data Inputs	
S0, S1	I	Select Input	
ĒĀ, ĒB	Ι	Enable Input	
Үа, Үв	0	Data Outputs	

FUNCTION TABLE⁽¹⁾

Ena	Enable		Select		outs	
ĒĀ	ĒB	S 1	S0	Ya	Υв	Function
Н	Х	Х	Х	Z	Х	Disable A
Х	Н	Х	Х	Х	Z	Disable B
L	L	L	L	10a	10в	S1 - 0 = 0
L	L	L	Н	11 A	11в	S1 - 0 = 1
L	L	Н	L	12a	12в	S1 - 0 = 2
L	L	Н	Н	13 A	13в	S1 - 0 = 3

NOTE:

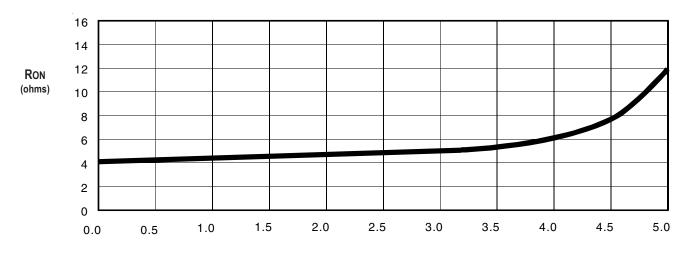
1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High-Impedence

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE


Following Conditions Apply Unless Otherwise Specified: Industrial: TA = -40° C to $+85^{\circ}$ C, Vcc = $3.3V \pm 0.3V$

Symbol	Parameter	Test C	Conditions		Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage	Guaranteed Logic HIGH	Vcc = 2.3V to 2.7	'V	1.7	—	—	V
		for Control Inputs	Vcc = 2.7V to 3.6	SV	2	—	—	
VIL	Input LOW Voltage	Guaranteed Logic LOW	Vcc = 2.3V to 2.7	'V	—	_	0.7	V
		for Control Inputs	Vcc = 2.7V to 3.6	SV	—	—	0.8]
lin	Input Leakage Current (Control Inputs)	$0V \le VIN \le VCC$		—	_	±1	μA	
loz	Off-State Current (Hi-Z)	$0V \le VOUT \le 5V$, Switches OFF			—	_	±1	μA
IOFF	Data Input/Output Power Off Leakage	VIN or VOUT 0V to 5V, Vcc = 0V			—	-	±1	μA
		Vcc = 2.3V	VIN = 0V	Ion = 30mA	—	6	8	
Ron	Switch ON Resistance	Typical at Vcc = 2.5V	VIN = 1.7V	Ion = 15mA	_	7	9	Ω
		Vcc = 3V	VIN = 0V	Ion = 30mA	_	4	6	
			VIN = 2.4V	Ion = 15mA	—	5	8	

NOTE:

1. Typical values are at Vcc = 3.3V and TA = 25°C.

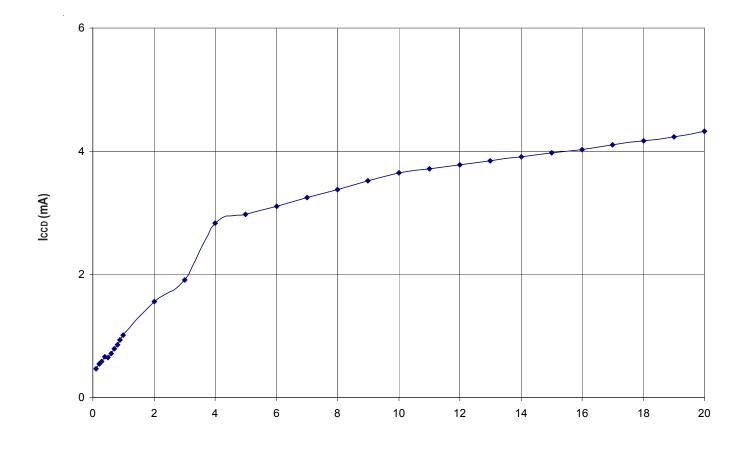
TYPICAL ON RESISTANCE vs VIN AT Vcc = 3.3V

VIN (Volts)

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾	Min.	Тур.	Max.	Unit
Iccq	Quiescent Power Supply Current	Vcc = Max., VIN = GND or Vcc, f = 0	—	2	4	mA
Δlcc	Power Supply Current (2,3) per Input HIGH	Vcc = Max., VIN = 3V, f = 0 per Control Input	—	—	30	μA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = 3.3V, A and B Pins Open, Control Inputs	See Typical	ICCD vs Enabl	e Frequency	graph below
		Toggling @ 50% Duty Cycle				

NOTES:


1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.

2. Per input driven at the specified level. Mux/demux pins do not contribute to Δ lcc.

3. This parameter is guaranteed but not tested.

4. This parameter represents the current required to switch internal capacitance at the specified frequency. The mux/demux inputs do not contribute to the Dynamic Power Supply Current. This parameter is guaranteed but not production tested.

TYPICAL ICCD vs ENABLE FREQUENCY CURVE AT VCC = 3.3V

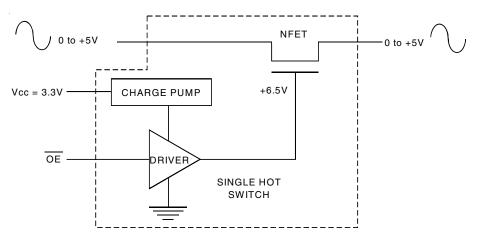
ENABLE FREQUENCY (MHz)

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

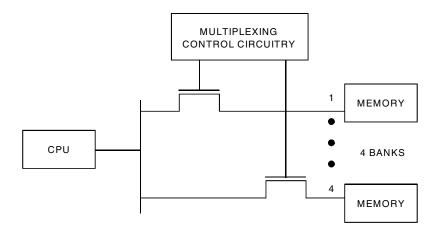
 $T_A = -40^{\circ}C$ to $+85^{\circ}C$

		$Vcc = 2.5 \pm 0.2 V^{(1)}$		$Vcc = 3.3 \pm 0.3 V^{(1)}$		
Symbol	Parameter	Min. ⁽⁴⁾	Max.	Min. ⁽⁴⁾	Max.	Unit
t PLH	Data Propagation Delay ^(2,3)		0.2	—	0.2	ns
t PHL	Yx to Ixx or Ixx to Yx					
tSEL	Select Time	1.5	9	1.5	8	ns
	S to Yx					
t PZH	Enable Time	1.5	9	1.5	9	ns
tPZL	Sx to Ixx					
t PHZ	Disable Time	1.5	8	1.5	8	ns
t PLZ	Sx to Ixx					
t PZH	Enable Time	1.5	9	1.5	8	ns
tPZL	Ex to Yx or Ixx					
t PHZ	Disable Time	1.5	8	1.5	8	ns
tPLZ	Ex to Yx or Ixx					
fExorSx	Operating Frequency - Enable ^(2,5)		10		20	MHz

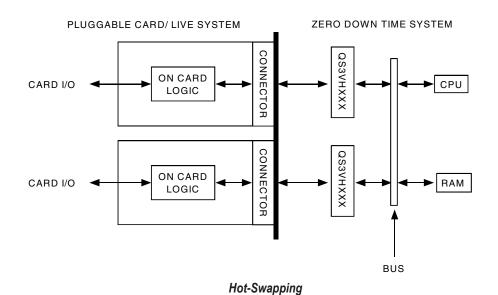
NOTES:


1. See Test Conditions under TEST CIRCUITS AND WAVEFORMS.

2. This parameter is guaranteed but not production tested.

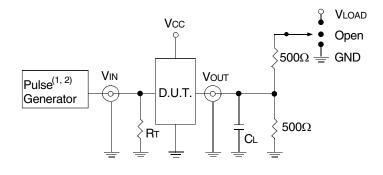

3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.2ns at CL = 50pF. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side. 4. Minimums are guaranteed but not production tested.

5. Maximum toggle frequency for Sx or \overline{Ex} control input (pass voltage > Vcc, VIN = 5V, RLOAD \ge 1M Ω , no CLOAD).


SOME APPLICATIONS FOR HOTSWITCH PRODUCTS

Rail-to-Rail Switching

Multiplexing/Demultiplexing



© 2019 Renesas Electronics Corporation

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

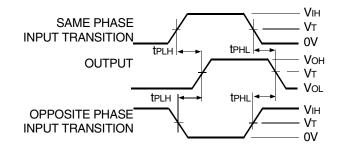
Symbol	$Vcc^{(1)}= 3.3V \pm 0.3V$	$Vcc^{(2)}$ = 2.5V ± 0.2V	Unit
Vload	6	2 x Vcc	V
Vih	3	Vcc	V
Vt	1.5	Vcc/2	V
VLZ	300	150	mV
Vнz	300	150	mV
CL	50	30	pF

Test Circuits for All Outputs

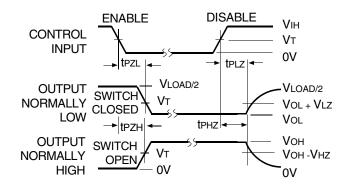
DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

 $\mathsf{R} \mathsf{T} = \mathsf{Termination}$ resistance: should be equal to $\mathsf{Z} \mathsf{O} \mathsf{U} \mathsf{T}$ of the Pulse Generator.


NOTES:

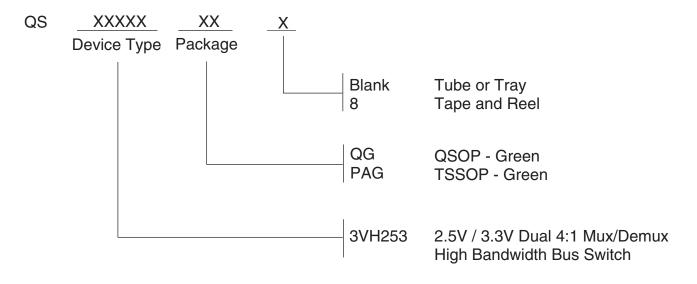
1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.


2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
tplz/tpzl	Vload
tphz/tpzh	GND
tPD	Open

Propagation Delay


NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Enable and Disable Times

INDUSTRIAL TEMPERATURE RANGE

ORDERING INFORMATION

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.