RENESAS

16:1 SINGLE-ENDED MULTIPLEXER

ICS850S1601I

General Description


The ICS850S1061I is a low skew16:1 Single-ended Clock Multiplexer and is a member of the HiPerClockS[™] family of High Performance Clock Solutions from IDT. The ICS850S1061I has 16 selectable single-ended clock inputs and 1

single-ended clock output. The device operates up to 250MHz and is packaged in a 24 TSSOP package.

Features

- 16:1 single-ended multiplexer
- Nominal output impedance: 20Ω (V_{DD} = 3.3V)
- Maximum output frequency: 250MHz
- Propagation delay: 2.7ns (maximum)
- Full 3.3V or 2.5V supply modes
- -40°C to 85°C ambient operating temperature
- Available in lead-free (RoHS 6) packages

Block Diagram

Pin Assignment

		_	
CLK8 🗌	1	24	CLK7
CLK9 🗆	2	23	CLK6
CLK10	3	22	CLK5
CLK11	4	21	CLK4
CLK12	5	20	CLK3
CLK13 🗌	6	19	CLK2
CLK14 🗌	7	18	CLK1
CLK15 🗌	8	17	CLK0
Vdd 🗖	9	16	GND GND
CLK_SEL0	10	15	Q
CLK_SEL1	11	14	🗆 OE
CLK_SEL2	12	13	CLK_SEL3

ICS850S1601I

24-Lead TSSOP 4.4mm x 7.8mm x 0.925mm package body G Package Top View

Table 1. Pin Descriptions

Number	Name		Туре	Description
1	CLK8	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
2	CLK9	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
3	CLK10	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
4	CLK11	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
5	CLK12	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
6	CLK13	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
7	CLK14	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
8	CLK15	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
9	V _{DD}	Power		Power supply pin.
10, 11. 12, 13	CLK_SEL0, CLK_SEL1, CLK_SEL2, CLK_SEL3	Input	Pulldown	Clock select inputs. See Table 3. LVCMOS / LVTTL interface levels.
14	OE	Input	Pullup	Output enable pin for Q output. LVCMOS/LVTTL interface levels.
15	Q	Output		Single-ended clock output. LVCMOS/LVTTL interface levels.
16	GND	Power		Power supply ground.
17	CLK0	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
18	CLK1	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
19	CLK2	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
20	CLK3	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
21	CLK4	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
22	CLK5	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
23	CLK6	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.
24	CLK7	Input	Pulldown	Single-ended clock input. LVCMOS/LVTTL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			2		pF
C	Rower Dissipation Canacitanas	V _{DD} = 3.465V		10		pF
C _{PD}	Power Dissipation Capacitance	V _{DD} = 2.625V		8		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
D	Output Impodance	V _{DD} = 3.3V±5%		20		Ω
R _{OUT}	Output Impedance	V _{DD} = 2.5V±5%		25		Ω

Function Tables

Table 3. Clock Input Function Table

	Inputs						
CLK_SEL3	CLK_SEL2	CLK_SEL1	CLK_SEL0	Input Selected to Q			
0	0	0	0	CLK0			
0	0	0	1	CLK1			
0	0	1	0	CLK2			
0	0	1	1	CLK3			
0	1	0	0	CLK4			
0	1	0	1	CLK5			
0	1	1	0	CLK6			
0	1	1	1	CLK7			
1	0	0	0	CLK8			
1	0	0	1	CLK9			
1	0	1	0	CLK10			
1	0	1	1	CLK11			
1	1	0	0	CLK12			
1	1	0	1	CLK13			
1	1	1	0	CLK14			
1	1	1	1	CLK15			

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating	
Supply Voltage, V _{DD}	4.6V	
Inputs, V _I	-0.5V to V _{DD} + 0.5V	
Outputs, V _O	-0.5V to V _{DD} + 0.5V	
Package Thermal Impedance, θ_{JA}	82.8°C/W (0 mps)	
Storage Temperature, T _{STG}	-65°C to 150°C	

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, V_{DD} = 3.3V \pm 5%, T_{A} = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Positive Supply Voltage		3.135	3.3	3.465	V
I _{DD}	Power Supply Current	Output Unterminated			49	mA

Table 4B. Power Supply DC Characteristics, V_{DD} = 2.5V ± 5%, T_A = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Positive Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current	Output Unterminated			41	mA

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
M	Input		V _{DD} = 3.465V	2		V _{DD} + 0.3	V
V _{IH}	High Voltage		V _{DD} = 2.625V	1.7		V _{DD} + 0.3	V
M	Input		V _{DD} = 3.465V	-0.3		0.8	V
V _{IL}	Low Voltage		V _{DD} = 2.625V	-0.3		0.7	V
IIH	Input	CLK[0:15], CLK_SEL[0:3]	V _{DD} = V _{IN} = 3.465V or 2.625V			150	μA
	High Current OE	OE	V _{DD} = V _{IN} = 3.465V or 2.625V			10	μA
IIL	Input	CLK[0:15], CLK_SEL[0:3]	$V_{DD} = 3.465 V \text{ or } 2.625 V, V_{IN} = 0 V$	-10			μA
	Low Current	OE	$V_{DD} = 3.465 V \text{ or } 2.625 V, V_{IN} = 0 V$	-150			μA
V	Output High Voltage; NOTE 1		$V_{DD} = 3.3V \pm 5\%$, $I_{OH} = -12mA$	2.6			V
V _{OH}			$V_{DD} = 2.5V \pm 5\%$, $I_{OH} = -12mA$	1.8			V
V _{OL}	Output Low Volt	age; NOTE 1	$V_{DD} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$, $I_{OL} = 12mA$			0.5	v

Table 4C. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$, $T_A = -40^{\circ}$ C to 85° C

NOTE 1: Output terminated with 50 Ω to V_{DD}/2. See Parameter Measurement Information section. Load Test Circuit diagrams.

AC Electrical Characteristics

Table 5A. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				250	MHz
tp _{LH}	Propagation Delay, Low-to-High; NOTE 1		1.4		2.7	ns
<i>t</i> jit	Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section	155.52MHz, Integration Range: 12kHz – 20MHz		0.35		ps
<i>t</i> sk(i)	Input Skew				175	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 2, 3				600	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	100		500	ps
a da		$f \leq 200 MHz$	46		54	%
odc	Output Duty Cycle; NOTE 4	f = 250MHz	40		60	%
MUXISOLATION	MUX Isolation	155.52MHz		43		dB

NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DD}/2$ of the output.

NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltage and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

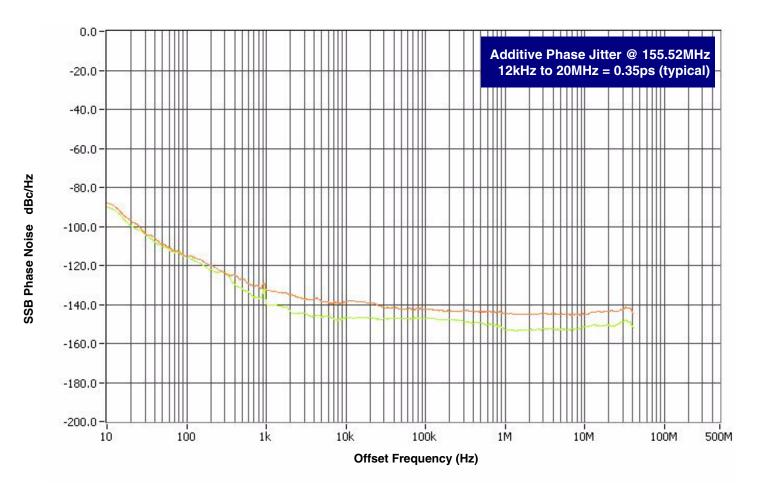
NOTE 3: This parameter is defined according with JEDEC Standard 65.

NOTE 4: Input duty cycle must be 50%.

Table 5B. AC Characteristics, V_{DD} = 2.5V \pm 5%, T_{A} = -40°C to 85°C

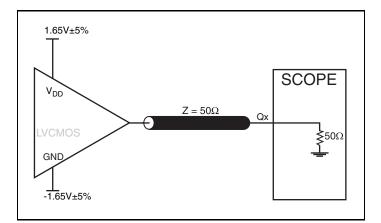
Parameter	Symbol	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Output Frequency				250	MHz
tp _{LH}	Propagation Delay, Low-to-High; NOTE 1		1.5		2.7	ns
<i>t</i> jit	Buffer Additive Phase Jitter, RMS; refer to Additive Phase Jitter Section	155.52MHz, Integration Range: 12kHz – 20MHz		0.32		ps
<i>t</i> sk(i)	Input Skew				195	ps
<i>t</i> sk(pp)	Part-to-Part Skew; NOTE 2, 3				600	ps
t _R / t _F	Output Rise/Fall Time	20% to 80%	80		600	ps
ada		$f \leq 200 MHz$	46		54	%
odc	Output Duty Cycle; NOTE 4	f = 250MHz	40		60	%
MUXISOLATION	MUX Isolation	155.52MHz		43		dB

NOTE 1: Measured from $V_{DD}/2$ of the input to $V_{DD}/2$ of the output. NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltage and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

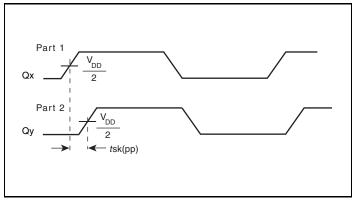

NOTE 3: This parameter is defined according with JEDEC Standard 65.

NOTE 4: Input duty cycle must be 50%.

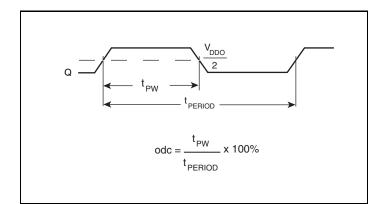
Additive Phase Jitter

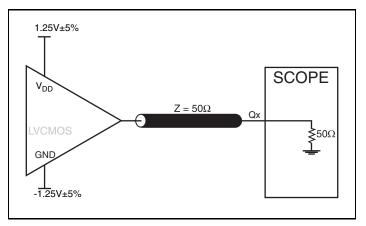

The spectral purity in a band at a specific offset from the fundamental compared to the power of the fundamental is called the *dBc Phase Noise*. This value is normally expressed using a Phase noise plot and is most often the specified plot in many applications. Phase noise is defined as the ratio of the noise power present in a 1Hz band at a specified offset from the fundamental frequency to the power value of the fundamental. This ratio is expressed in decibels (dBm) or a ratio of the power in the 1Hz band

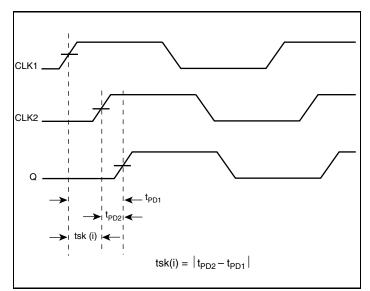
to the power in the fundamental. When the required offset is specified, the phase noise is called a *dBc* value, which simply means dBm at a specified offset from the fundamental. By investigating jitter in the frequency domain, we get a better understanding of its effects on the desired application over the entire time record of the signal. It is mathematically possible to calculate an expected bit error rate given a phase noise plot.



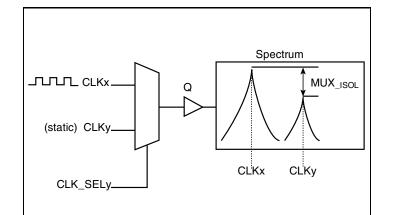
As with most timing specifications, phase noise measurements has issues relating to the limitations of the equipment. Often the noise floor of the equipment is higher than the noise floor of the device. This is illustrated above. The device meets the noise floor of what is shown, but can actually be lower. The phase noise is dependent on the input source and measurement equipment.

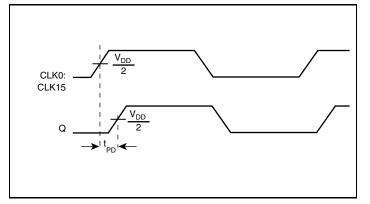

Parameter Measurement Information


3.3V Output Load AC Test Circuit


Part-to-Part Skew

Output Duty Cycle/Pulse Width/Period


2.5V Output Load AC Test Circuit


Input Skew

8

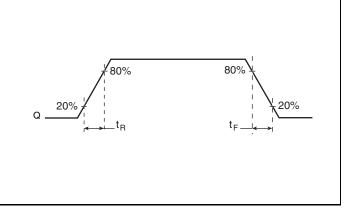
Parameter Measurement Information, continued

MUX Isolation

Propagation Delay

Application Information

Recommendations for Unused Input Pins


Inputs:

CLK Inputs

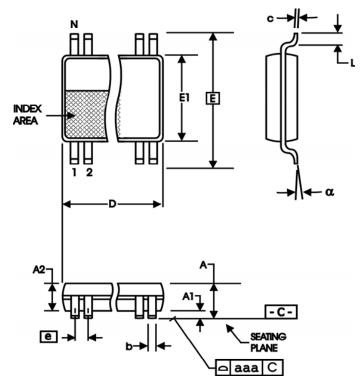
For applications not requiring the use of a clock input, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the CLK input to ground.

LVCMOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

Reliability Information

Table 6. θ_{JA} vs. Air Flow Table for a 24 Lead TSSOP


	θ_{JA} vs. Air Flow		
Meters per Second	0	1	2.5
Multi-Layer PCB, JEDEC Standard Test Boards	82.8°C/W	78.5	76.3

Transistor Count

The transistor count for ICS859S1601I is: 649

Package Outline and Package Dimensions

Package Outline - G Suffix for 24 Lead TSSOP

Table 7. Package Dimensions

All Din	All Dimensions in Millimeters					
Symbol	Minimum	Maximum				
Ν	24					
Α		1.20				
A1	0.5	0.15				
A2	0.80	1.05				
b	0.19	0.30				
С	0.09	0.20				
D	7.70	7.90				
E	6.40	Basic				
E1	4.30	4.50				
е	0.65	Basic				
L	0.45	0.75				
α	0 °	8°				
aaa		0.10				

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
850S1601BGILF	ICS50S1601BIL	"Lead-Free" 24 Lead TSSOP	Tube	-40°C to 85°C
850S1601BGILFT	ICS50S1601BIL	"Lead-Free" 24 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.