Renesns

3.3 VOLT TIME SLOT INTERCHANGE DIGITAL SWITCH WITH RATE MATCHING $16,384 \times 16,384$ CHANNELS

IDT72V73263

FEATURES:

- Up to 64 serial input and output streams
- Maximum $16,384 \times 16,384$ channel non-blocking switching
- Accepts data streams at $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}$, $16.384 \mathrm{Mb} / \mathrm{s}$ or $32.768 \mathrm{Mb} / \mathrm{s}$
- Rate matching capability: rate selectable on both RX and TX in eight groups of 8 streams
- Optional Output Enable Indication Pins for external driver High-Z control
- Per-channel Variable Delay Mode for low-latency applications
- Per-channel Constant Delay Mode for frame integrity applications
- Enhanced Block programming capabilities
- TX/RX Internal Bypass
- Automatic identification of ST-BUS ${ }^{\circledR}$ and GCl serial streams
- Per-stream frame delay offset programming
- Per-channel High-Impedance output control
- Per-channel processor mode to allow microprocessor writes to TX streams
- Bit Error Rate Testing (BERT) for testing
- Direct microprocessor access to all internal memories
- Selectable Synchronous and Asynchronous Microprocessor bus timing modes
- IEEE-1149.1 (JTAG) Test Port
- Available in 208-pin (17mm x 17mm) Plastic Ball Grid Array (PBGA)
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

DESCRIPTION:

The IDT72V73263 has anon-blocking switch capacity of $16,384 \times 16,384$ channels at $32.768 \mathrm{Mb} / \mathrm{s}$. With 64 inputs and 64 outputs, programmable per stream control, and a variety of operating modes the IDT72V73263 is designed for the TDM time slot interchange function in either voice or data applications.
Some of the main features of the IDT72V73263 are LOW power 3.3 Volt operation, automaticST-BUS ${ }^{\circledR} / G C I$ sensing, memory block programming, simple microprocessor interface, JTAG Test Access Port (TAP) and per stream programmable input offset delay, variable or constant throughput modes, outputenable and processor mode, BERtesting, bypass mode, and advanced block programming.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

NOTE:

1. S/A should be tied directly to VCC or GND for proper operation.

PIN DESCRIPTION

SYMBOL	NAME	I/O	PBGA PIN NO.	DESCRIPTION
A0-A15	Address 0-15	1	*See PBGA Table Below	These address lines access all internal memories.
BEL	Byte Enable LOW	1	L4	In synchronous mode, this input will enable the lower byte (D0-7) on to the data bus.
C32i	Clock	1	A1	Serial clock for shifting data in/out on the serial data streams. This inputaccepts a 32.768 MHz clock.
CS	Chip Select	1	E1	Active LOW inputused by a microprocessor to activate the microprocessor port of the device.
D0-15	DataBus 0-15	I/O	*See PBGA TableBelow	These pins are the data bus of the microprocessor port.
DS	DataStrobe	1	D4	This active LOW input works in conjunction with CSto enable the read and write operations. This active LOW input sets the data bus lines (D0-D15).
DTA/BEH	DataTransfer Acknowledgment Active LOW Output	1/0	K2	In asynchronous mode this pin indicates that a data bus transfer is complete. When the bus cycle ends,this pin drives HIGH and then High-Z allowing for faster bus cycles with a weaker pull-up resistor. A pull-up resistor is required to hold a HIGH level when the pin is High-Z. When the device is in/Byte Enable HIGH synchronous bus mode, this pin acts as an input and will enable the upper byte (D8-15) on to the databus.
F32i	FramePulse	1	B1	This inputaccepts and automatically identifies frame synchronization signals formatted according to ST-BUS ${ }^{\oplus}$ and GCI specifications.
GND			*See PBGA TableBelow	Ground.
ODE	OutputDrive Enable	1	A3	This is the outputenable control for the TX serial outputs. When ODE input is LOW and the OSB bit of the CR register is LOW, all TX outputs are in a High-Impedance state. If this input is HIGH, the TX output drivers are enabled. However, each channel may still be put into a High-Impedance state by using the per channel control bits in the Connection Memory HIGH.
RX0-63	RXInput0 to 63	1	*See PBGA TableBelow	Serial data Input Stream. These streams may have data rates of $2.048 \mathrm{Mb} / \mathrm{s}$, $4.096 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}, 16.384 \mathrm{Mb} / \mathrm{s}$, or32.768Mb/sdepending uponthe selectionin Receive DataRate Selection Register (RDRSR).
RESET	Device Reset:	1	A2	This input (active LOW) puts the device in its reset state that clears the device internal counters, registers and brings TXO-63 and microportdata outputs to a High-Impedance state. The RESET pin must be held LOW for a minimum of 20 ns to reset the device.
R/W	Read/Write	1	E2	This input controls the direction of the data bus lines (D0-D15) during a microprocessor access.
S/A	Synchronous/ Asynchronous Bus Mode	1	C1	This input will select between asynchronous microprocessor bus timing and synchronous microprocessor bus timing. In synchronous mode, DTA/BEHacts as the BEHinput and is used in conjunction with BELto output data on the data bus. In asynchronous bus mode, BELis tied LOW and DTABEH acts as the DTA, data bus acknowledgment output.
TCK	TestClock	1	D2	Provides the clock to the JTAG test logic.
TDI	TestSerial Dataln	1	C3	JTAG serial test instructions and data are shifted in on this pin. This pin is pulled HIGH by an internal pull-up when not driven.
TDO	TestSerial Data Out	0	D1	JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in High-Impedance state when JTAG scan is notenabled.
TMS	TestModeSelect	1	C2	JTAG signal that controls the state transitions of the TAP controller. This pin is pulled HIGH by an internal pull-up when not driven.
TRST	TestReset	1	D3	Asynchronously initializes the JTAG TAP controller by putting itin the Test-LogicReset state. This pin is pulled by an internal pull-up when not driven. This pin should be pulsed LOW on power-up, or held LOW, to ensure that the device is in the normal functional mode.

PIN DESCRIPTION (CONTINUED)

SYMBOL	NAME	I/0	PBGA PIN NO.	DESCRIPTION
TXO-7 TX16-23 TX32-39 TX48-55	TXOutput	0	*See PBGA Table Below	Serial data Output Stream. These streams may have data rates of $2.048 \mathrm{Mb} / \mathrm{s}$, $4.096 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}, 16.384 \mathrm{Mb} / \mathrm{s}$, or $32.768 \mathrm{Mb} / \mathrm{s}$ depending upon the selection in TransmitData Rate Selection Register (TDRSR). IfG0/G2/G4/G6 are programmed to $32.768 \mathrm{Mb} /$ s mode the corresponding odd group is unavailable (G1/G3/G5G7).
TX8-15/OEIO-7 TX24-31/OEI16-23 TX40-47/OEI32-39 TX56-63/OEI48-55	TXOutput/Output Enable Indication	0	*See PBGA Table Below	When outputstreams are selected via TDRSR, these pins are the TX output streams. When outputenable indicationfunction is selected, these pins reflectthe active or HighImpedance status for the corresponding TX outputstream.
Vcc			*See PBGA TableBelow	+3.3 Volt Power Supply.

PBGA PIN NUMBER TABLE

SYMBOL	NAME	I/O	PIN NUMBER
A0-A15	Address A0-15	1	E3, E4, F1, F2, F3, F4, G1, G2, G3, H1, H2, H3, J3, J2, J1, K3.
D0-D15	Data Bus 0-15	1/0	T2, T1, R1, P1, P2, N1, N2, N3, M1, M2, M3, M4, L1, L2, L3, K1.
GND	Ground		G7, G8, G9, G10, H7, H8, H9, H10, J7, J8, J9, J10,K7, K8, K9, K10,
RX0-63	RXInput 0 to 63	1	B3, A4, B4, C4, A5, B5, C5, D5, D11, C11, B11, A11, D12, C12, B12, A12, E13, D13, C13, B13, A13, D14, C14, B14, G16, G15, G14, H16, H15, H14, J14, J15, J16, K14, K15, K16, L13, L14, L15, L16, R14, T13, R13, P13, T12, R12, P12, N12, T11, R11, P11, N11, T10, R10, P10, T9, N4, P4, R4, T4, P3, R3, T3, R2.
$\begin{aligned} & \text { TX0-TX7 } \\ & \text { TX16-23 } \\ & \text { TX32-39 } \\ & \text { TX48-55 } \end{aligned}$	TXOutput	0	A6, B6, C6, D6, A7, B7, C7, A8 A14, B15, A15, A16, B16, C16, C15, D16 M13, M14, M15, M16, N13, N14, N15, N16 R9, P9, P8, R8. T8, P7, R7, T7
TX8-15/0EI0-7 TX24-31/OEI16-23 TX40-47/OEI32-39 TX56-63/OEI48-55	TXOutput/Output	0	B8, C8, C9, B9, A9, C10, B10, A10. D15, E16, E15, E14, F16, F15, F14, F13. P14, P15, P16, R16, T16, T15, R15, T14. N6, P6, R6, T6, N5, P5, R5, T5.
Vcc			B2, D7, D8, D9, D10, G4, G13, H4, H13, J4, J13, K4, K13, N7, N8, N9, N10.

DESCRIPTION (CONTINUED):

The IDT72V73263 is capable of switching up to $16,384 \times 16,384$ channels withoutblocking. Designed to switch 64 Kbit/s PCM orN x64 Kbit/s data, the device maintains frame integrity in data applications and minimizes throughput delay for voice applications on a per-channel basis.

The 64 serial input streams (RX) of the IDT72V73263 can be run at $2.048 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}, 16.384 \mathrm{Mb} / \mathrm{s}$ or $32.768 \mathrm{Mb} /$ s allowing 32, $64,128,256$ or 512 channels per 125μ s frame. The data rates on the output streams can independently be programmed to run at any of these data rates.
Withtwo main operating modes, ProcessorMode and ConnectionMode, the IDT72V73263 can easily switch data from incoming serial streams (Data Memory) or from the controlling microprocessor via Connection Memory.
As control and status information is critical in datatransmission, the Processor Mode is especially useful when there are multiple devices sharing the inputand outputstreams.
With data coming from multiple sources and through different paths, data entering the device is often delayed. To handle this problem, the IDT72V73263 has aFrameOffset feature toallow individual streams to be offsetfrom theframe pulse in half clock-cycle intervals up to +7.5 clock cycles.
The IDT72V73263 also provides a JTAG test access port, memory block programming, Group Block Programming, RX/TX internal bypass, a simple microprocessor interface and automatic ST-BUS ${ }^{\otimes} / \mathrm{GCl}$ sensing to shorten setup time, aid in debugging and ease use of the device without sacrificing capabilities.

FUNCTIONAL DESCRIPTION

DATAANDCONNECTIONMEMORY

All data that comes in through the RX inputs go through a serial-to-parallel conversion before being stored into internal Data Memory. The 8 KHz frame pulse (F32i) is used to mark the 125μ sframe boundaries and to sequentially address the input channels in Data Memory.
Dataoutputon the TX streams may come from either the serial inputstreams (Data Memory) or from the Connection Memory via the microprocessor or in the casethatRXinputdatais to beoutput, the addresses in ConnectionMemory are used to specify a stream and channel ofthe input. TheConnection Memory is setup in such a way that each location corresponds to an output channel for each particularstream. Inthatway, more than one channel can outputthe same data. In Processor Mode, the microprocessor writes data to the Connection Memory locations corresponding to the stream and channel that is to beoutput. The lowerhalf(8leastsignificantbits) oftheConnectionMemory LOW is output every frame until the microprocessorchanges the dataormode ofthe channels. By using this Processor Mode capability, the microprocessor can access input and outputtime-slots on a per-channel basis.
The three leastsignificantbits of the Connection Memory HIGH are used to control per-channel mode of the outputstreams. The MOD2-0 bits are used to select Processor Mode, Constantor Variable Delay Mode, BitError Rate, and the High-Impedance state of outputdrivers. Ifthe MOD2-0 bits are setto 1-1-1 accordingly, only that particular output channel (8 bits) will be in the HighImpedance state. IftheMOD2-0 bits are setto 1-0-0 accordingly, that particular channel will be in Processor Mode. Ifthe MOD2-0 bits are setto 1-0-1 aBitError Rate Test pattern will be transmitted for thattime slot. SeeBERT section. Ifthe

MOD2-0 bits are set to 0-0-1 accordingly, that particular channel will be in ConstantDelay Mode. Finally, ifthe MOD2-0 bits are setto 0-0-0, that particular channel will be in Variable Delay Mode.

SERIAL DATA INTERFACE TIMING

The master clock frequency of the IDT72V73263 is 32.768 MHz , C32i. For $32.768 \mathrm{Mb} / \mathrm{s}$ data rates, this results in a single-bit per clock. For $16.384 \mathrm{Mb} / \mathrm{s}$, $8.192 \mathrm{Mb} / \mathrm{s}, 4.096 \mathrm{Mb} / \mathrm{s}$, and $2.048 \mathrm{Mb} / \mathrm{s}$ this will result in two, four, eight, and sixteen clocks perbit, respectively. The IDT72V73263 provides two different interface timing modes, ST-BUS ${ }^{\circledR}$ or GCI. The IDT72V73263 automatically detects the polarity of an input frame pulse and identifies itas eitherST-BUS ${ }^{\circledR}$ or GCI.
For $32.768 \mathrm{Mb} / \mathrm{s}$, inST-BUS ${ }^{\circledR}$ Mode, datais clocked outon a falling edge and is clocked in on the subsequent rising-edge. For $16.384 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}$, $4.096 \mathrm{Mb} / \mathrm{s}$, and $2.048 \mathrm{Mb} / \mathrm{s}$ however there is not the typical associated clock since the IDT72V73263accepts only a32.768MHz clock. As a resultthere will be $2,4,8$, and 16 clock between the $32.768 \mathrm{Mb} / \mathrm{s}$ transmit edge and the subsequently transmitedges. Although inthis is the case, the IDT72V73263 will appropriately transmit and sample on the proper edge as ifthe respective clock were present. See ST-BUS ${ }^{\circledR}$ Timing for detail.
For $32.768 \mathrm{Mb} / \mathrm{s}$, in GCI Mode, data is clocked out on a rising edge and is clocked in on the subsequent falling-edge. For $16.384 \mathrm{Mb} / \mathrm{s}, 8.192 \mathrm{Mb} / \mathrm{s}$, $4.096 \mathrm{Mb} / \mathrm{s}$, and $2.048 \mathrm{Mb} /$ s however, again there is not the typical associated clocksincethe IDT72V73263accepts only a32.768MHzclock. As aresultthere will $2,4,8$, and 16 clocks between the $32.768 \mathrm{Mb} /$ stransmitedge and the other transmitedges. Althoughthis is the case, the IDT72V73263 will appropriately transmitand sample on the proper edge as ifthe respective clock were present. See GCI Bus Timing for detail.

DELAY THROUGH THE IDT72V73263

The switching of information from the input serial streams to the output serial streams results in a throughput delay. The device can be programmed to performtime-slotinterchangefunctionswithdifferentthroughputdelay capabilities on a per-channel basis. Forvoice applications, variable throughputdelay is best as itensure minimum delay between input and output data. In wideband data applications, constant throughput delay is best as the frame integrity of the information is maintained through the switch.
The delay through the device varies according to the type of throughputdelay selected in the MOD bits of the Connection Memory.

VARIABLE DELAY MODE (MOD2-0 = 0-0-0)

Inthis mode, mostly for voice applications where minimum throughput delay is desired, delay is dependent on the combination of source and destination channels. The minimum delay achievable is a 3 channel periods of the slower datarate.

CONSTANT DELAY MODE (MOD2-0 = 0-0-1)

In this mode, frame integrity is maintained in all switching configurations by making use of a multiple data memory buffer. Inputchannel data is written into the data memory buffers during frame n will be read out during frame $n+2$. In the IDT72V73263, the minimumthroughputdelay achievable inConstantDelay mode will be one frame plus one channel. See Table 14.

MICROPROCESSOR INTERFACE

The IDT72V73263's microprocessor interface looks like a standard RAM interface to improve integration into a system. With a 16-bit address bus and a 16-bitdatabus allmemories can be accessed. Using the TSI microprocessor interface, reads and writes are mapped into Data and Connection memories. By allowing the internal memories to be randomly accessed, the controlling microprocessor has more time to manage other peripheral devices and can more easily and quickly gather information and setup the switch paths. Table 1 shows the mapping of the addresses into internal memory blocks. In orderto minimize the amountof memory mapped space however, the Memory Select(MS1-0)bits intheControl Registermustbewrittentofirstto selectbetween theConnection Memory HIGH, theConnectionMemory LOW, orDataMemory. Effectively, the Memory Selectbits actas an internal mux to selectbetween the Data Memory, Connection Memory HIGH, and Connection Memory LOW.

MEMORY MAPPING

The address bus on the microprocessor interface selects the internal registers and memories ofthe IDT72V73263. Themostsignificantbitofthe address select between the registers and internal memories. See Table 1 for mappings.
As explained in the Initialization section, after system power-up, the TDRSR and RDRSR, should be programmed immediately to establish the desired switching configuration.
The data in the Control Register consists of the Software Reset, RX/TX Bypass, OutputEnable Polarity, All OutputEnable, Full Block Programming, BlockProgramming Data, BeginBlockProgramming Enable, ResetConnection Memory LOW in Block Programming, OutputStandby, and Memory Select.

SOFTWARE RESET

The Software Reset serves the same function as the hardware reset. As with the hard reset, the Software Resetmustalso be set HIGH for 20ns before bringing the Software ResetLOW againfornormal operation. Once the Software Reset is LOW, internal registers and other memories may be read or written. During Software Reset, the microprocessor port is still able to read from all
internal memories. The only write operation allowed during a Software Reset is totheSoftwareResetbitintheControl RegistertocompletetheSoftwareReset.

CONNECTION MEMORY CONTROL

If the ODE pin and the Output Standby bitare LOW, all output channels will be in three-state. See Table 2 for detail.
IfMOD2-0 of the Connection Memory HIGH is 1-0-0 accordingly, the output channel will be in Processor Mode. In this case the lower eight bits of the Connection Memory LOW are output each frame until the MOD2-0 bits are changed. IfMOD2-0 ofthe Connection Memory HIGH are 0-0-1 accordingly, the channel will be in Constant Delay Mode and bits 14-0 are used to address a location in Data Memory. If MOD2-0 of the Connection Memory HIGH are $0-0-0$, the channel will be in Variable Delay Mode and bits $14-0$ are used to addressalocation in DataMemory. IfMOD2-0 oftheConnection Memory HIGH are 1-1-1, the channel will be in High-Impedance mode and that channel will be in three-state.

RX/TX INTERNAL BYPASS

When the Bypass bit of control registers is 1, all RX streams will be "shorted" to TX in effectbypassing all internal circuitry ofthe TSI. This effectively sets the TSItoa1-to-1 switch mode with minimal //Odelay. Azero can be writtentoallow normal operation. The intention ofthis mode is to minimize the delay from the RX input to the TX output making the TSI "invisible".

INITIALIZATION OF THE IDT72V73263

After powerup, the state of theConnection Memory is unknown. As such, the outputs should be put in High-Impedance by holding theODE pin LOW. While theODE is LOW, the microprocessorcan initialize the device by using the Block Programming feature and program the active paths viathe microprocessorbus. Once the device is configured, the ODE pin (or OutputStandby bit depending on initialization) can be switched to enable the TSI switch.

TABLE 1 -ADDRESS MAPPING

A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	R/W	Location	Hex Value
1	STA5	STA4	STA3	STA2	STA1	STAO	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CHO	R/W	Internal memory (CM, DM (read only) ${ }^{(1)}$	$\begin{aligned} & 0 \times 8000- \\ & 0 x F F F F \end{aligned}$
0	0	0	0	0	0	0	X	X	X	X	X	X	X	X	X	R/W	Control	$\begin{aligned} & \text { Ox00XX } \\ & \text { Register } \\ & \hline \end{aligned}$
0	0	0	0	0	0	1	X	X	X	X	X	X	X	X	X	R/W	TDRSR0	0x02XX
0	0	0	0	0	1	0	X	X	X	X	X	X	X	X	X	R/W	TDRSR1	0x04XX
0	0	0	0	0	1	1	X	X	X	X	X	X	X	X	X	R/W	RDRSR0	0x06XX
0	0	0	0	1	0	0	X	X	X	X	X	X	X	X	X	R/W	RDRSR1	0x08XX
0	0	0	0	1	0	1	X	X	X	X	X	X	X	X	X	R/W	BPSA	0x0AXX
0	0	0	0	1	1	0	X	X	X	X	X	X	X	X	X	R/W	BPEA	0x0CXX
0	0	0	0	1	1	1	X	X	X	X	X	X	X	X	X	RW	BIS	0x-0EXX
0	0	0	1	0	0	0	X	X	X	X	X	X	X	X	X	R/W	BER	0x10XX
0	0	1	0	0	0	0	X	X	X	X	X	X	X	X	X	R/W	FOR0	0x20XX
0	0	1	0	0	0	1	X	X	X	X	X	X	X	X	X	R/W	FOR1	0x22XX
0	0	1	0	0	1	0	X	X	X	X	X	X	X	X	X	R/W	FOR2	0x24XX
0	0	1	0	0	1	1	X	X	X	X	X	X	X	X	X	R/W	FOR3	0x26XX
0	0	1	0	1	0	0	X	X	X	X	X	X	X	X	X	R/W	FOR4	0x28XX
0	0	1	0	1	0	1	X	X	X	X	X	X	X	X	X	R/W	FOR5	$0 \times 2 A X X$
0	0	1	0	1	1	0	X	X	X	X	X	X	X	X	X	R/W	FOR6	0x2CXX
0	0	1	0	1	1	1	X	X	X	X	X	X	X	X	X	R/W	FOR7	0x2EXX
0	0	1	1	0	0	0	X	X	X	X	X	X	X	X	X	R/W	FOR8	0x30XX
0	0	1	1	0	0	1	X	X	X	X	X	X	X	X	X	R/W	FOR9	0x32XX
0	0	1	1	0	1	0	X	X	X	X	X	X	X	X	X	R/W	FOR10	0x34XX
0	0	1	1	0	1	1	X	X	X	X	X	X	X	X	X	R/W	FOR11	0x36XX
0	0	1	1	1	0	0	X	X	X	X	X	X	X	X	X	R/W	FOR12	0x38XX
0	0	1	1	1	0	1	X	X	X	X	X	X	X	X	X	R/W	FOR13	0x3AXX
0	0	1	1	1	1	0	X	X	X	X	X	X	X	X	X	R/W	FOR14	0x3CXX
0	0	1	1	1	1	1	X	X	X	X	X	X	X	X	X	R/W	FOR15	0x3EXX

NOTE:

1) Select Connection Memory High, Connection Memory Low, or Data Memory by setting the MS1-0 bits in the Control Register.

TABLE 2 - OUTPUT HIGH-IMPEDANCE CONTROL

MOD2-0 BITS IN CONNECTION MEMORY HIGH	OE X BIT OF TDRSR CONTROL REGISTER	ODE PIN	OSB BIT IN	OUTPUT DRIVER STATUS
$1-1-1$	1	X	X	0
Any, otherthan 1-1-1	1	0	1	PerChannel High-Impedance
Any, otherthan1-1-1	1	0	0	AllTXin High-Impedance
Any, otherthan1-1-1	1	1	1	Enable
Any, otherthan1-1-1	1	X	X	Enable
Any, otherthan1-1-1	0	Enable		

NOTE:

X = Don't Care.

TABLE 3 -CONTROL REGISTER (CR) BITS

BIT	NAME	DESCRIPTION
15	SRS (Software Reset)	A one will reset the device and have the same effect as the RESET pin. Must be zero for normal operation.
14	$\begin{aligned} & \hline \text { BYP } \\ & \text { (RX/TXBypass) } \end{aligned}$	Whenthe Bypass bitis 1, all RX streams will be "shorted" to TX-in effect bypassing all internal circuitry of the TSI. This effectively sets the TSI toa 1-to-1 switch mode with almostonly a few nanoseconds of delay. Azero can be written to allow normal operation. The intention of this mode is to minimize the delay from the RXinputto the TX output making the TSI "invisible". Any offset values in the FOR register will be required.
13	OEPOL (OutputEnablePolarity)	When 1, aoneon OEl pin denotes an active state on the outputdata stream; zero on OEl pin denotes High-Impedance state. When 0 , a one denotes High-Impedance and a zero denotes an active state. OEI mode is entered on a per-group basis in the DRSR.
12	AOE (All OutputEnable)	When 1, all outputstream pins (TXn) become OEI to allow for atwo-chip solution foralarger switching matrix with OEl pins. When in AOE the DRS must be set to the corresponding data rate of the other device.
11	PRST (PRBS Reset)	When HIGH, the PRBS transmitter output will be initialized.
10	CBER (Clear Bit Error Rate)	A low to high transititon of this bit clears the BER register (BERR).
9	SBER (StartBitError Rate)	A low to high transition in this bit starts the bit error rate test. The bit error test results is kept in the BER register (BERR).
8	FBP (Full Block Programming)	When 1, this bit overrides the BPSA and BPEA registers and programs the full Connection Memory space. When 0, the BPSA and BPEA determine the Connection Memory space to be programmed.
7-5	BPD2-0 (BlockProgramming Data)	These bits carry the value to be loaded into the Connection Memory blockwheneverthe Connection Memory block programming features is activated. After the BPE bit is set to 1 from 0 , the contents of the bits BPD1-0 are loaded into bit 1 and 0 (MOD2-0) of the Connection Memory HIGH.
4	BPE (Begin Block Programming Enable)	Azero to one transition of this bitenables the Connection Memory block programming feature delimited by the BPSA and BPEA registers as well as for a full block program. Once the BPE bitis setHIGH, the device will program the Connection Memory block asfastasthanifthe usermanually programmedeachConnectionMemorylocationthroughthemicroprocessor. Afterthe programming function has finished, the BPE bit returns to zero to indicate the operation is completed. When the $B P E=1$, the BPE bit can be setto 0 to abortblock programming.
3	RCML (ResetConnection Memory LOW in Block Programming)	When RCML $=1$, all bits 14-0 in Connection Memory LOW will be reset to zero during block programming; when RCML $=0$, bits $14-0$ in Connection Memory LOW will retain their original values during block programming.
2	OSB (OutputStandby)	When ODE $=0$ and $\mathrm{OSB}=0$, the output drivers of transmit serial streams are in High-Impedance mode. When either ODE $=1$ or $\mathrm{OSB}=1$, the output serial stream drivers function normally.
1-0	MS1-0 (Memory Select)	These two bits decide which memory to be accessed via microprocessor port. 00 -- Connection Memory LOW 01 -- Connection Memory HIGH 10 -- Data Memory 11 -- Reserved

MEMORY BLOCK PROGRAMMING

The IDT72V73263 provides users with the capability of initializing the entire Connection Memory block in two frames. To set bits 2,1 and 0 of every Connection Memory HIGH location, set the Full BlockProgram to 1, write the desired pattern in to the Block Programming Data Bits (BPD2). All oftheblock programming control canbefound intheControl Register and enable the Block Program Enablebit.
Enabled by setting the BlockProgramEnablebitoftheControl RegisterHIGH. When the Block Programming Enable bitoftheControl Register is setto HIGH, the Block Programming data will be loaded into the bits 2,1 and 0 of every Connection Memory HIGHlocation regardless of the selected data rate for the group. TheConnection Memory LOW bits will be loaded with zeros when the Reset Connection Memory LOW(RCML) bit is enabled and is otherwise left untouched. Whenthememoryblock programming iscomplete, the device resets the Block Programming Enable and the BPD 2-0 bits to zero.
The IDT72V73263 also incorporates a feature termed Group Block Programming. GroupBlockProgramming, allows subsectionsoftheConnection Memory to beblock programmed as ifthe microprocessorwere accessing the Connection Memory HIGH locations in a back-to-back fashion. The results in one connection memory high location being programmed for each C32iclock cycle. By having the TSI perform this function it allows the controlling
microprocessor more time to performotherfunctions. Also, the TSI canbemore efficient in programming the locations since oneCMHlocation is programmed every 32 i clock cycles. The group block programming function programs "channel n "forall streams deliniated by the group beforegoing to "channel $\mathrm{n}+1$ ". A C-cycle representation is shown below. The Group Block Programming feature is composed of theBlockProgramming StartAddress(BPSA), theBlock Programming End Address(BPEA), and the BPE and BPD bits in the Control Register. The BPSA contains a startaddress for the block programming and BPEA contains an end address. The block programming will start at the start address and program until the end address even if the end address is "less" than the startaddress. Inotherwords there is no mechanism to prevent a start address that is larger than the end address. If this occurs, the inverse CM locations inthegiven group are programmed resulting ina "wrap around" effect. This "wrap around" effect is independent for both the stream and channel addresses. This is illustrated in the Group Block Programming diagram See Figure 1 Group Block Programming Feature. Users must not initiat a block program too close (ahead) of the present transmitlocation. If this is done the TSI may simultaneously access the CM location that is being modified and unpredictable data on TX outputs may occur. It should be noted however, in orderto enable the Group Block Programming the Full Block Program(FBP) mustbe 0 .

TABLE 4 - BLOCK PROGRAMMING STARTING ADDRESS (BPSA) REGISTER

Reset Value: 0000 H															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	G2	G1	G0	STA2	STA1	Sta0	CH8	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CHO

BIT	NAME	DESCRIPTION
15	Unused	Mustbezerofornormal operation.
$14-12$	G2-0 (Group Address bits 2-0)	These bits are used to selectwhich group will be block programmed
$11-9$	STA2-0 (Stream Address bits2-0)	Thesebits are used to selectstarting stream number for block programming.
$8-0$	CHA8-0 (Channel Address bits 8-0)	These bits are used to selectstarting channel numberfor block programming.

TABLE 5-BLOCK PROGRAMMING ENDING ADDRESS (BPEA) REGISTER

BIT	NAME	DESCRIPTION
$15-12$	Unused	Mustbe one fornormal operation.
$11-9$	STA2-0 $($ Stream Address bits2-0)	These bits are used to selectending stream numberforburstprogramming.
$8-0$	CHA8-0 (ChannelAddress bits8-0)	These bits are used to selectstarting channel numberfor burstprogramming.

NOTE:
The group number is defined by the stream address in the BPSA.

Figure 1. Group Block Programming

```
int ST, CH
for (CH = StartChannel; CH <= EndChannel; CH++) {
    for (ST = StartStream; ST <= EndStream; ST++) {
        CMH[ST][CH]= BPD;
            }
}
NOTE:
```

This code is for illustraion purposes only. The IDT72V73263
is a HW instantiation of this kind of software.
Figure 2. "Basic Instantiation"

```
/* GroupNum is 0-7 */
/* GroupDataRate = 2, 4, 8, 16. or 32 (2Mb/s, 4Mb/s, 8Mb/s, 16Mb/s, 32Mb/s) */
functional BlockProgram (int GroupNum; int GroupDataRate) {
    int ST, CH;
    int MaxStream = ((GroupNum * 8) + 7) ; (((GroupDataRate/2)* 32) - 1);
    int MaxChannel = (()GroupDataRate
    if (StartChannel <= EndChannel) {
        for (CH = StartChannel; CH <= EndChannel; CH++) {
                /* StartStream <=' EndStream and StartChannel <= EndChannel */
                if (StartStream <= EndStream) {
                        for (ST = StartStream; ST <= EndStream; ST++){
                        } CMH[ST][CH]= BPD;
                }
                }* StartStream > EndStream and StartChannel <= EndChannel */
                else{
                        CMH [ST] [CH] = BPD;
                        for (ST = = (GroupNum*7); ST < [ST] [CH] = STartStream; ST++){
                }
}* End > Start Channel */
else{
    /* The last part to be programmed */
    for (CH}= EndChannel; CH <== MaxChannel; CH++) {
        /* StartStream > EndStream and StartChannel > EndChannel */
        if (StartStream <= EndStream) {
            for (ST = StartStream; ST <= EndStream; ST++) {
                    CMH [ST] [CH] = BPD;
                }
            }/*
            /* StartStream > EndStream and StartChannel > EndChannel */
            else{
                for (ST = EndStream; ST <= MaxStream; ST++) {
                    CHM [ST] [CH] = BPD;
                }
                }
            }
    ]/*
    for (CH}=0;\stackrel{\textrm{CH}}{\textrm{CH}}=\mathrm{ StartChannel; CH++)
        /* StartStream > EndStream and StartChannel > EndChannel */
        if (StartStream <= EndStream) {
            for (ST = StartStream; ST <= EndStream; ST++) {
                    CMH [ST] [CH]= BPD;
                }
    }-}
    /* StartStream > EndStream and StartChannel . EndChannel */
    else{
                CMH [ST] [CH] = BPD;
            }
                CMH [ST] [CH]= BPD;
            }
        }
}
```

NOTE:

This code is for illustration purposes only. The IDT72V73263 is a HW instantiation of this kind of software.

Figure 3. "Real" Instantiation of Memory Block Programming

BIT ERROR RATE

Pseudo-Random BitSequences (PRBS) can be independently transmitted and received. By setting the connection memory high bits to the BER transmit mode, that particular channel will transmita BER pattern of the form $2^{15}-1$. For the receiver only one channel can be specified and monitored at a given time. By setting the BER InputSelection (BIS) to a given channel, every error in the BER sequence will be incremented by one.
If the more than $2^{16}-1$ errors are encountered the BERR register will automatically overflow and be resettozero. Itis importanttonote thatno interrupt or warning will be issued in this case. It is recommended that this register be
polled periodically and reset to prevent an overflow condition. To reset the Pseudo-random bit sequence and the error count registers set the PRST, CBER, and SBER,ofthe Control Register to high. SeetheControl Registerfor details.
Following a write to the $B E R R$ register a read of the $B E R R$ will result in the present value of the BERR data. Likewise, when the Clear Bit Error Rate bit (CBER) in the control register is activated, this will clear the internal BERR (iBERR).
As a general rule, a read of BERR should be proceeded by a write to BERR. Again, it should be noted that the write to the BERR register will actually initiate atransferfromthe iBERR totheBERR whilethe microprocessordataisignored.

TABLE 6 - BER INPUT SELECTION REGISTER (BIS)

	Reset Value: Unknown (must be programmed)															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0 BG2 BG1 BG0 BSA2 BSA1 BSA0 BCA8 BCA BCA6 BCA5 BCA4 BCA3 BCA2 BCA1 BCA0																
BIT	NAME			DESCRIPTION												
15	Unused			Mustbezerofornormal operation												
14-12	BG2-BG0 (BER Input Group Address Bits)			These bits refer to the input data group which receives the BER data.												
11-9	BSA2-BSA0 (BER Input Stream Address Bits)			These bits refer to the input data stream which receives the BER data.												
8-0	BCA8-BCA0 (Local BER Input Channel Address Bits)			These bits refer to the input channel which receives the BER data.												

TABLE 7 - BIT ERROR RATE REGISTER (BERR)

Reset Value: Unknown (must be programmed)																
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BER15 BER14 BER13				BER12	BER11	BER10	BER9	BER8	BER7		BER5	BER4	BER3	BER2	BER1	BERO
BIT	NAME			DESCRIPTION												
15-0	BER15-BER0 (Local BitErrorRate Count Bits)			These bits refer to the local biterror counts.												

NOTE:
Before a read of the BERR, a write to the BERR is neccesary. As a read only register the write will have no effect. See the Bit Error Rate section for more details.

INPUT FRAME OFFSET SELECTION

Inputframe offset selection allows the channel alignment of individual input streams tobeoffsetwithrespecttotheoutputstreamchannelalignment. Although all input data comes in at the same speed, delays can be caused by variable path serial backplanes and variable path lengths which may be implemented in large centralized and distributed switching systems. Because data is often
delayed, this feature is useful in compensating for the skew between input streams.
Each input stream can have its own delay offset value by programming the frame inputoffsetregisters(FOR, Table8). The maximumallowable skewis +7.5 clock periods forward witha resolution of $1 ⁄ 2$ clock period, see Table 9 . Theoutput streams cannotbe adjusted.

TABLE 8 -FRAME INPUT OFFSET REGISTER (FOR) BITS

Reset Value: 0000 H .

Register	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
FOR0Register	OF32	OF31	OF30	DLE3	OF22	OF21	OF20	DLE2	OF12	OF11	OF10	DLE1	OF02	OF01	OFOO	DLE0
FOR1 Register	OF72	OF71	OF70	DLE7	OF62	OF61	OF60	DLE6	OF52	OF51	OF50	DLE5	OF42	OF41	OF40	DLE4
FOR2Register	OF112	OF111	OF110	DLE11	OF102	OF101	OF100	DLE10	OF92	OF91	OF90	DLE9	OF82	OF81	OF80	DLE8
FOR3Register	OF152	OF151	OF150	DLE15	OF142	OF141	OF140	DLE14	OF132	OF131	OF130	DLE13	OF122	OF121	OF120	DLE12
FOR4Register	OF192	OF191	OF190	DLE19	OF182	OF181	OF180	DLE18	OF172	OF171	OF170	DLE17	OD162	OD161	OF160	DLE16
FOR5Register	OF232	OF231	OF230	DLE23	OF222	OF221	OF220	DLE22	OF212	OF211	OF210	DLE21	OF202	OF201	OF200	DLE20
FOR6Register	OF272	OF271	OF270	DLE27	OF262	OF261	OF260	DLE26	OF252	OF251	OF250	DLE25	OF242	OF241	OF240	DLE24
FOR7 Register	OF312	OF311	OF310	DLE31	OF302	OF301	OF300	DLE30	OF292	OF291	OF290	DLE29	OF282	OF281	OF280	DLE28
FOR8Register	OF352	OF351	OF350	DLE35	OF342	OF341	OF340	DLE34	OF332	OF331	OF330	DLE33	OF322	OF321	OF320	DLE32
FOR9Register	OF392	OF391	OF390	DLE39	OF382	OF381	OF380	DLE38	OF372	OF371	OF370	DLE37	OF362	OF361	OF360	DLE36
FOR10Register	OF432	OF431	OF430	DLE43	OF422	OF421	OF420	DLE42	OF412	OF411	OF410	DLE41	OF402	OF401	OF400	DLE40
FOR11 Register	OF472	OF471	OF470	DLE47	OF462	OF461	OF460	DLE46	OF452	OF451	OF450	DLE45	OF442	OF441	OF440	DLE44
FOR12Register	OF512	OF511	OF510	DLE51	OF502	OF501	OF500	DLE50	OF492	OF491	OF490	DLE49	OF482	OF481	OF480	DLE48
FOR13Register	OF552	OF551	OF550	DLE55	OF542	OF541	OF540	DLE54	OF532	OF531	OF530	DLE53	OF522	OF521	OF520	DLE52
FOR14Register	OF592	OF591	OF590	DLE59	OF582	OF581	OF580	DLE58	OF572	OF571	OF570	DLE57	OF562	OF561	OF560	DLE56
FOR15Register	OF632	OF631	OF630	DLE63	OF622	OF621	OF620	DLE62	OF612	OF611	OF610	DLE61	OF602	OF601	OF600	DLE60

NAME	DESCRIPTION
OFn2, OFn1, OFn0 (Offset Bits 2, $1 \& 0$)	These three bits define how long the serial interface receiver takes to recognize and store bit 0 from the $R X$ input pin: i.e., to starta new frame. The input frame offset can be selected to +7.5 clock periods from the pointwhere the external frame pulse input signal is applied to the FOi input of the device.
DLEn (DataLatchEdge)	ST-BUS ${ }^{\oplus}$ and DLEn $=0$, offset is on the clock boundary. GCI mode: DLEn $=1$, offset is a half cycle off of the clock boundary.

TABLE 9 - OFFSET BITS (OFN2, OFN1, OFN0, DLEN) \& FRAME DELAY BITS (FD11, FD2-0)

INPUT STREAM OFFSET CLOCK PERIOD SHIFT BASED ON 32.768MHZ CLOCK					CORRESPONDING OFFSET BITS			
$32.768 \mathrm{Mb} / \mathrm{s}$	16.384Mb/s	8.192Mb/s	4.096Mb/s	$2.048 \mathrm{Mb} / \mathrm{s}$	OFn2	OFn1	OFn0	DLEn
None	None	None	None	None	0	0	0	0
+ 0.5	+ 1.0	+ 1.0	+ 2.0	+ 4.0	0	0	0	1
+1.0	+2.0	+2.0	+4.0	+ 8.0	0	0	1	0
+1.5	+3.0	+3.0	+6.0	+ 12.0	0	0	1	1
+ 2.0	+4.0	+4.0	+ 8.0	+ 16.0	0	1	0	0
+2.5	+ 5.0	+ 5.0	+ 10.0	+ 20.0	0	1	0	1
+ 3.0	+ 6.0	+ 6.0	+ 12.0	+ 24.0	0	1	1	0
+3.5	+ 7.0	+ 7.0	+14.0	+28.0	0	1	1	1
- • • • • • • • •								
+ 7.5	+ 15.0	+ 15.0	+30.0	+60.0	1	1	1	1

[^0]

IDT72V732633.3VTIME SLOTINTERCHANGE

OUTPUT ENABLE INDICATION
The IDT72V73263 has the capabilitytoindicate the state ofthe outputs (active or three-state) by enabling the Output Enable Indication in the DRSR. In the

OutputEnable Indication mode however, those outputstreams cannotbe used to transmit CM or DM data only OE data. In the diagram below notice how the transmitting stream, TXO is uneffected by the enabling and disabling ofthe OE stream(TX8).

NOTE:
The TX0-7 pins are unaffected by the OEI Change.

Figure 6. The Effect of Enabling and Disabling of the OE Bit in TDRSR

NOTE:
Group 0 is in $32.768 \mathrm{Mb} / \mathrm{s}$ and Group 1 is in OEI Mode.

Figure 7. OEI Function

NOTE:
The OEl pins are unaffected by the OEO change.

Figure 8. Group OE Operation

TABLE 10 - TRANSMIT DATA RATE SELECTION REGISTER (TDRSR)

If $\mathrm{G} 0 / \mathrm{G} 2 / \mathrm{G} 4 / \mathrm{G} 6$ are programmed to be run at $32.768 \mathrm{Mb} / \mathrm{s}$, then $\mathrm{G} 1 / \mathrm{G} 3 / \mathrm{G} 5 / \mathrm{G} 7$ will be unavailable, respectively, except for OEI purposes. In other words if G 0 is programmed for $32.768 \mathrm{Mb} / \mathrm{s}$, G 1 will only be available for OEI.

NOTES:

1. "x" corresponds to groups $0-7$ (8 Data streams per group).
2. If the $\mathrm{Gx} 2-0$ are programmed to the reserved values the device will operate in the default $2.048 \mathrm{Mb} / \mathrm{s}$ mode.
3. Only odd groups can be programmed for OEI. The OEI rate corresponds it's associated even group.

TABLE 11 - TX GROUPING AND DATA RATES

GROUP NUMBER	STREAMS	SPEED	WITH OEI=1
G0	$0-7$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$
G1	$8-15$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$	OEl<0-7>
G2	$16-23$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$
G3	$24-31$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$	OEl<16-23>
G4	$32-39$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$
G5	$40-47$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$	OEl<32-39>
G6	$48-55$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$
G7	$56-63$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$	OEl<48-55>

TABLE 12-RECEIVE DATA RATE SELECTION REGISTER(RDRSR)

Gx0-Gx2	These three group bits are used to select the receive data rates for the eight groups of eight streams. See table 13 for data rates.			
	$\underline{\text { Gx2 }}{ }^{(1)}$	$\underline{\mathrm{Gx}} 1^{(1)}$	$\underline{\mathrm{GxO}}{ }^{(1)}$	DataRate
	0	0	0	$2.048 \mathrm{Mb} / \mathrm{s}$
	0	0	1	$4.096 \mathrm{Mb} / \mathrm{s}$
	0	1	0	$8.192 \mathrm{Mb} / \mathrm{s}$
	0	1	1	$16.384 \mathrm{Mb} / \mathrm{s}$
	1	0	0	$32.768 \mathrm{Mb} / \mathrm{s}$
	1	0	1	Reserved ${ }^{(2)}$
	1	1	0	Reserved ${ }^{(2)}$
	1	1	1	Reserved ${ }^{(2)}$

If $\mathrm{G} 0 / \mathrm{G} 2 / \mathrm{G} 4 / \mathrm{G} 6$ are programmed to be run at $32.768 \mathrm{Mb} / \mathrm{s}$, then $\mathrm{G} 1 / \mathrm{G} 3 / \mathrm{G} 5 / \mathrm{G} 7$ will be unavailable, respectively, except for OEI purposes. In other words if G 0 is programmed for $32.768 \mathrm{Mb} / \mathrm{s}$, G 1 will only be available for OEI.

NOTES:

1. "x" corresponds to groups $0-7$ (8 Data streams per group).
2. If the $\mathrm{G} \times 2-0$ are programmed to the reserved values the device will operate in the default $2.048 \mathrm{Mb} / \mathrm{s}$ mode.
3. Only odd groups can be programmed for OEI. The OEI rate corresponds to it's associated even group.

TABLE 13 - RX GROUPING AND DATA RATES

GROUP NUMBER	STREAMS	SPEED
G0	$0-7$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$
G1	$8-15$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$
G2	$16-23$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s} /$
G3	$24-31$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$
G4	$32-39$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$
G5	$40-47$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s} /$
G6	$48-55$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$
G7	$56-63$	$2.048 \mathrm{Mb} / \mathrm{s}-32.768 \mathrm{Mb} / \mathrm{s}$

TABLE 14 - CONNECTION MEMORY HIGH

TABLE 15 - CONNECTION MEMORY LOW

Reset Value:		Unknown (must be programmed)													
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	SAB5	SAB4	SAB3	SAB2	SAB1	SABO	CAB8	CAB7	CAB6	CAB5	CAB4	CAB3	CAB2	CAB1	CABO

BIT	NAME	DESCRIPTION
15	Unused	Mustbe zero fornormal operation
$14-9$	SAB5-0 (Source Stream Address Bits)	The binary value is the number of the data stream for the source of the connection.
$8-0$	CAB8-0 (Source Channel Address Bits)	The binary value is the number of the channel for the source of the connection.

NOTES:

1. When running the device at lower bit rates (i.e. $2,4,8$, or $16.384 \mathrm{Mb} / \mathrm{s}$), make sure the bitscorresponding to the unused channels are set to 0 .
2. When $\mathrm{G} 0 / \mathrm{G} 2 / \mathrm{G} 4 / \mathrm{G} 6$ are programmed for $32.768 \mathrm{Mb} / \mathrm{s}$ operation its corresponding group $\mathrm{G} 1 / \mathrm{G} 3 / \mathrm{G} 5 / \mathrm{F} 7$ will be unavailable.
3. In processor mode, data in the lower byte (bits0-7) of the Connection Memory LOW will be output to the TX streams. The order in which the data are output will be starting from the LSB (Bit 0) to the MSB (Bit 7) of the lower byte. The figure below illustrates the sequence:

Figure 9. Processor Mode Bit Sequencing

TABLE 16 - BOUNDARY SCAN REGISTER BITS

Device Pin	Boundary Scan Bit 0 to 267		
	Input Scan Cell	Output Scan Cell	Three-state Control
ODE	0		
RESET	1		
C32i	2		
F32i	3		
S/A	4		
DS	5		
CS	6		
R/W	7		
A0	8		
A1	9		
A2	10		
A3	11		
A4	12		
A5	13		
A6	14		
A7	15		
A8	16		
A9	17		
A10	18		
A11	19		
A12	20		
A13	21		
A14	22		
A15	23		
BEL	24		
DTABEH	25	26	27
D15	28	29	30
D14	31	32	33
D13	34	35	36
D12	37	38	39
D11	40	41	42
D10	43	44	45
D9	46	47	48
D8	49	50	51
D7	52	53	54
D6	55	56	57
D5	58	59	60
D4	61	62	63
D3	64	65	66
D2	67	68	69
D1	70	71	72
D0	73	74	75
RX63	76		
RX62	7		
RX61	78		

Device Pin	Boundary Scan Bit 0 to 267		
	Input Scan Cell	Output Scan Cell	Three-state Control
RX60	79		
RX59	80		
RX58	81		
RX57	82		
RX56	83		
TX63/OEI31		84	85
TX62/OEI30		86	87
TX61/OEI29		88	89
TX60/OEI28		90	91
TX59/OEI27		92	93
TX58/OEI26		94	95
TX57/OEI25		96	97
TX56/OEI24		98	99
TX55/OEi23		100	101
TX54/OEi22		102	103
TX53/OEI21		104	105
TX52/OEI20		106	107
TX51/OEI19		108	109
TX50/OEI18		110	111
TX49/0E17		112	113
TX48/OEI16		114	115
RX55	116		
RX54	117		
RX53	118		
RX52	119		
RX51	120		
RX50	121		
RX49	122		
RX48	123		
RX47	124		
RX46	125		
RX45	126		
RX44	127		
RX43	128		
RX42	129		
RX41	130		
RX40	131		
TX47/OEI15		132	133
TX46/0EI14		134	135
TX45/OEI13		136	137
TX44/OEI12		138	139
TX43/0E111		140	141
TX42/OEI10		142	143
TX41/OEI9		144	145
TX40/OEI8		146	147

TABLE 16 - BOUNDARY SCAN REGISTER BITS (CONTINUED)

Device Pin	Boundary Scan Bit 0 to 267		
	$\begin{gathered} \text { Input } \\ \text { Scan Cell } \end{gathered}$	Output Scan Cell	Three-state Control
TX39/OEI7		148	149
TX38/OEI6		150	151
TX37/OEI5		152	153
TX36/OEI4		154	155
TX35/OEI3		156	157
TX34/OEI2		158	159
TX33/0E11		160	161
TX32/OEI0		162	163
RX39	164		
RX38	165		
RX37	166		
RX36	167		
RX35	168		
RX34	169		
RX33	170		
RX32	171		
RX31	172		
RX30	173		
RX29	174		
RX28	175		
RX27	176		
RX26	177		
RX25	178		
RX24	179		
TX31		180	181
TX30		182	183
TX29		184	185
TX28		186	187
TX27		188	189
TX26		190	191
TX25		192	193
TX24		194	195
TX23		196	197
TX22		198	199
TX21		200	201
TX20		202	203
TX19		204	205
TX18		206	207
TX17		208	209
TX16		210	211
RX23	212		
RX22	213		
RX21	214		
RX20	215		

Device Pin	Boundary Scan Bit 0 to 267		
	Input Scan Cell	Output Scan Cell	Three-state Control
RX19	216		
RX18	217		
RX17	218		
RX16	219		
RX15	220		
RX14	221		
RX13	222		
RX12	223		
RX11	224		
RX10	225		
RX9	226		
RX8	227		
TX15		228	229
TX14		230	231
TX13		232	233
TX12		234	235
TX11		236	237
TX10		238	239
TX9		240	241
TX8		242	243
TX7		244	245
TX6		246	247
TX5		248	249
TX4		250	251
TX3		252	253
TX2		254	255
TX1		256	257
TX0		258	259
RX7	260		
RX6	261		
RX5	262		
RX4	263		
RX3	264		
RX2	265		
RX1	266		
RX0	267		

JTAG SUPPORT

The IDT72V73263JTAG interface conforms tothe Boundary-Scan standard IEEE-1149.1. This standard specifies adesign-for-testability technique called Boundary-Scan test (BST). The operation of the boundary-scan circuitry is controlled by an external test access port (TAP) Controller.

TEST ACCESS PORT (TAP)

The Test Access Port (TAP) provides access to the test functions of the IDT72V73263. It consists of three inputpins and one outputpin.

- Test Clock Input (TCK)

TCK provides the clock for the testlogic. The TCK does notinterfere with any on-chip clock and thus remains independent. The TCK permits shifting oftest data into or out of the Boundary-Scan register cells concurrently with the operation of the device and without interfering with the on-chip logic.
-Test Mode Select Input (TMS)
The logic signals received at the TMS input are interpreted by the TAP Controller to control the testoperations. The TMS signals are sampled at the rising edge of the TCK pulse. This pin is internally pulled to VCC whenitis not driven from an external source.
-Test Data Input (TDI)
Serial inputdata applied to this portis fed either intothe instruction registeror into a test data register, depending on the sequence previously applied to the TMS input. Both registers are described in a subsequent section. The received inputdatais sampled attherisingedge ofTCKpulses. Thispinis internallypulled to VCC when it is not driven from an external source.
-TestData Output(TDO)
Depending on the sequence previously appliedtothe TMS input, the contents of eitherthe instruction register or data register are serially shifted outthrough the TDO pin on the falling edge of each TCK pulse. When no data is shifted through the boundary scan cells, the TDO driver is setto a High-Impedance state.

-Test Reset (TRST)

Reset the JTAG scan structure. This pin is internally pulled to VCC when it is not driven from an external source.

INSTRUCTION REGISTER

In accordancewith the IEEE-1149.1 standard, the IDT72V73263 uses public instructions. The IDT72V73263 JTAG interface contains afour-bitinstruction register. Instructions are serially loaded into the instruction registerfrom the TDI when the TAP Controllerisinitsshift-IRstate. Subsequently, the instructions are decoded toachieve two basicfunctions:toselecthetestdataregister thatmay operate while the instruction is current, and to define the serial testdata register path, which is used to shift data between TDI and TDO during data register scanning. See Table 12 for Instruction decoding.

TESTDATAREGISTER

Asspecified in IEEE-1149.1, the IDT72V73263 JTAG Interface contains two testdataregisters:
-The Boundary-Scan register
The Boundary-Scan register consists of a series of Boundary-Scan cells arranged to form a scan path around the boundary of the IDT72V73263 core logic.
-The Bypass Register
The Bypass registeris asingle stage shiftregisterthat provides aone-bitpath from TDI to TDO. The IDT72V73263 boundary scan register bits are shown in Table 14. Bit0 is the firstbitclocked out. All three-state enable bits are active HIGH.

ID CODE REGISTER

As specified in IEEE-1149.1, this instruction loads the IDR with the Revision Number, Device ID, JEDEC ID, and ID Register Indicator Bit. See Table 10.

TABLE 17 -IDENTIFICATION REGISTER DEFINITIONS

INSTRUCTION FIELD	VALUE	DESCRIPTION
Revision Number(31:28)	0×0	Reserved forversionnumber
IDT Device ID (27:12)	0×0430	Defines IDT partnumber
IDT JEDEC ID (11:1)	0×33	Allows unique identification ofdevice vendoras IDT
IDRegister IndicatorBit(Bit0)	1	Indicates the presence of an ID register

TABLE 18 - SCAN REGISTER SIZES

REGISTER NAME	BIT SIZE
Instruction(IR)	4
Bypass (BYR)	1
Identification(IDR)	32
Boundary Scan (BSR)	Note(1)

NOTE:

1. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local IDT sales representative.

TABLE 19-SYSTEM INTERFACE PARAMETERS

INSTRUCTION	CODE	
EXTEST	0000	Forces contents ofthe boundary scan cells onto the device outputs ${ }^{(1)}$. Places the boundary scan register (BSR) between TDland TDO.
BYPASS	1111	Places the bypass register (BYR) between TDI and TDO.
IDCODE	0010	Loads the ID register (IDR) with the vendor ID code and places the register between TDI and TDO.
HIGH-Z	0011	Places the bypass register (BYR) between TDI and TDO. Forces all device output drivers to a High-Z state.
SAMPLE/PRELOAD	0001	Places the boundary scan register (BSR) between TDI and TDO. SAMPLE allows data from device inputs (2) and outputs captured in the boundary scan cells and shifted serially through TDO. PRELOAD allows data to be input serially into the boundary scan cells via the TDI.
RESERVED	All other codes	Several combinations are reserved. Do not use other codes than those identified above.

NOTES:

1. Device outputs $=$ All device outputs except TDO.
2. Device inputs = All device inputs except TDI, TMS and TRST.

TABLE 20 - JTAG AC ELECTRICAL CHARACTERISTICS ${ }^{(1,2,3,4)}$

SYMBOL	PARAMETER	MIN.	MAX.	UNITS
tJCYC	JTAG Clock Input Period	100	-	ns
tJCH	JTAG Clock HIGH	40	-	ns
tJCL	JTAG Clock LOW	40	-	ns
tJR	JTAG Clock Rise Time	-	$3^{(1)}$	ns
tJF	JTAG Clock Fall Time	-	$3^{(1)}$	ns
tJRST	JTAGReset	50	-	ns
tJRSR	JTAG Reset Recovery	50	-	ns
tJCD	JTAGData Output	-	25	ns
tJDC	JTAGData OutputHold	0	-	ns
tJS	JTAGSetup	15	-	ns
tJH	JTAG Hold	15	-	ns

NOTES:

1. Guaranteed by design.
2. 30 pF loading on external output signals.
3. Refer to AC Electrical Test Conditions stated earlier in this document.
4. JTAG operations occur at one speed $(10 \mathrm{MHz})$. The base device may run at any speed specified in this datasheet.

NOTES:

1. Device inputs = All device inputs except TDI, TMS and TRST.

Figure 10. JTAG Timing Specifications

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Parameter	Min.	Max.	Unit
Vcc	Supply Voltage	-0.5	+4.0	V
Vi	VoltageonDigital Inputs	GND -0.3	$\mathrm{Vcc}+0.3$	V
IO	CurrentatDigital Outputs	-50	50	mA
Ts	Storage Temperature	-55	+125	${ }^{\circ} \mathrm{C}$
PD	Package PowerDissapation	-	2	W

NOTE:

1. Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

RECOMMENDED OPERATING CONDITIONS ${ }^{(1)}$

Symbol	Parameter	Min.	Typ.	Max.	Unit
VcC	Positive Supply	3.0	3.3	3.6	V
$\mathrm{VIH}^{(1)}$	Input HIGH Voltage	2.0	-	VCC	V
VIL	InputLOW Voltage	-0.3	-	0.8	V
Top	OperatingTemperature Industrial	-40	25	+85	${ }^{\circ} \mathrm{C}$

NOTES:

1. Inputs/Outputs are not 5 V tolerant
2. Voltages are with respect to ground (GND) unless otherwise stated.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Min.	Typ.	Max.	Units
$\mathrm{ICC}^{(2)}$	Supply Current	-	-	380	mA
$\mathrm{IIL}^{(3,4)}$	InputLeakage(inputpins)	-	-	60	$\mu \mathrm{~A}$
$\mathrm{IBL}^{(3,4)}$	InputLeakage(I/Opins)	-		60	$\mu \mathrm{~A}$
$\mathrm{IOZ}^{(3,4)}$	High-ImpedanceLeakage	-	-	60	$\mu \mathrm{~A}$
$\mathrm{VoH}^{(5)}$	OutputHIGHVoltage	2.4	-	-	V
$\operatorname{VoL}^{(6)}$	OutputLOWVoltage	-	-	V	

NOTES:

1. Voltages are with respect to ground (GND) unless otherwise stated.
2. Outputs unloaded.
3. $0 \leq \mathrm{V} \leq \mathrm{VCC}$.
4. Maximum leakage on pins (output or I/O pins in High-Impedance state) is over an applied voltage (V).
5. $10 \mathrm{H}=10 \mathrm{~mA}$.
6. $\mathrm{IOL}=10 \mathrm{~mA}$.

AC ELECTRICAL CHARACTERISTICS - TIMING PARAMETER MEASUREMENT VOLTAGE LEVELS

Symbol	Rating	Level	Unit
V_{TT}	TLTThreshold	1.5	V
VHM	TTLRise/Fall Threshold Voltage HIGH	2.0	V
VLM	TTLRise/Fall Threshold VoltageLOW	0.8	V
	InputPulse Levels		V
tr,ff	InputRise/Fall Times	1	ns
	InputTiming ReferenceLevels		V
	OutputReferenceLevels		V
$\mathrm{CL}^{(1)}$	OutputLoad	50	pF

NOTE:

1. JTAG CL is 30 pF

Figure 11. AC Termination

Figure 12. AC Test Load

AC ELECTRICAL CHARACTERISTICS - RESET AND ODE TIMING

Symbol	Parameter	Min.	Typ.	Max.	Units
trz	Active to High-Zon Master Reset	-	-	12	ns
trs	ResetPulseWidth	20	-	-	ns
tooelz	Output Driver Enable (ODE) to Low-Z	6	-	-	ns

ODE
6160 Drw10

Figure 13. Reset and ODE Timing

AC ELECTRICAL CHARACTERISTICS - C32i AND ODE TO HIGH-Z TIMING AND C32i AND ODE TO LOW-Z TIMING

Symbol	Parameter	Min.	Typ.	Max.	Units
tCLZ(1)	Clock to Low-Z	3	-	-	ns
tCHZ	Clock to High-Z	-	-	9	ns
todea	ODE to Valid Data	6	-	-	ns
todehz	OutputDriver Enable(ODE) to High-Z	3	-	9	ns
tODELZ	OututDriver Enable(ODE) to Low-Z	4	-	-	ns
tSIH ${ }^{(1)}$	RXHold Time	4	-	-	ns
tsOD	Clock to Valid Data	3	7	9	ns

NOTE:

1. $C_{L}=30 \mathrm{pF}$.

Figure 14. Serial Output and External Control

Figure 15. Output Driver Enable (ODE)

AC ELECTRICAL CHARACTERISTICS - ST-BUS ${ }^{\circledR}$ TIMING

Symbol	Parameter	Min.	Typ.	Max.	Units
toH	C32i Pulse Width HIGH Clock rate $=32.768 \mathrm{Mb} / \mathrm{s}$	13	15.25	17	ns
tCL	C32i Pulse Width LOW Clock rate $=32.768 \mathrm{Mb} / \mathrm{s}$	13	15.25	17	ns
tcP	C32i Period Clock rate $=32.768 \mathrm{Mb} / \mathrm{s}$	29	30.5	35	ns
tFPH	Frame Pulse Hold Time from C32i falling (ST-BUS ${ }^{\text {® }}$ or GCI)	5	-	-	ns
tFPS	Frame Pulse Setup Time from C32i falling *ST-BUS ${ }^{\text {® }}$ or GCI)	5	-	-	ns
tFPW	Frame Pulse Width (ST-BUS ${ }^{\circledR}$, GCI) Clock rate $=32.768 \mathrm{Mb} / \mathrm{s}$	13	-	31	ns
tr,t(fi)	Clock Rise/Fall Time	-	1	-	ns
tSIH	RXHold Time	4	-	-	ns
tsis	RXSetup Time	2	-	-	ns
tsod	Clock to Valid Data	3	7	9	ns

NOTE:

1. Parameters verified under test conditions.

NOTE:

1. These clocks are for reference purposes only

The TSI only accepts a 32.768 MHz clock.

Figure 16. $\mathrm{ST}-\mathrm{BUS}{ }^{\circledR}$ Timing

AC ELECTRICAL CHARACTERISTICS - GCI BUS TIMING

Symbol	Parameter	Min.	Typ.	Max.	Units
tCH	C32i Pulse Width HIGH Clock rate $=32.768 \mathrm{Mb} / \mathrm{s}$	13	15.25	17	ns
tcl	C32i Pulse Width Clock rate $=32.768 \mathrm{Mb} / \mathrm{s}$	13	15.25	17	ns
tcP	C32i Period Clock rate $=32.768 \mathrm{Mb} / \mathrm{s}$	29	30.5	35	ns
tFPH	Frame Pulse Hold Time from C32i falling (ST-BUS ${ }^{\oplus}$ or GCI)	5	-	-	ns
tFPS	Frame Pulse Setup Time before C32i falling (ST-BUS ${ }^{\oplus}$ or GCI)	5	-	-	ns
tfPW	Frame Pulse Width (ST-BUS ${ }^{\oplus}$ or GCI) Clock rate $=32.768 \mathrm{Mb} / \mathrm{s}$	13	-	31	ns
$t \mathrm{tr}, \mathrm{fl}^{(1)}$	Clock Rise/Fall Time	-	1	-	ns
tSIH	RXHold Time	4	-	-	ns
tsIs	RXSetup Time	2	-	-	ns
tSOD	Clock to Valid Data	3	7	9	ns

NOTE:

1. Parameters verified under test conditions.

NOTE:

1. These clocks are for reference purposes only.

The TSI only accepts a 32.768 MHz clock.

Figure 17. GCI Bus Timing

AC ELECTRICAL CHARACTERISTICS - OEI BUS TIMING IN ST-BUS ${ }^{\circledR}$ MODE

Symbol	Parameter	Min.	Typ.	Max.	Units
tCH	C32i Pulse Width HIGH Clock rate $=32.768 \mathrm{Mb} / \mathrm{s}$	13	15.25	17	ns
tCHZ ${ }^{(2)}$	Clock to High-Z	-	-	9	ns
tCL	C32i Pulse Width Clock rate $=32.768 \mathrm{Mb} / \mathrm{s}$	13	15.25	17	ns
tCLZ ${ }^{(2)}$	Clock to Low-Z	3	-	-	ns
tcP	C32i Period Clock rate $=32.768 \mathrm{Mb} / \mathrm{s}$	29	30.5	35	ns
tFPH	Frame Pulse Hold Time from C32i falling (ST-BUS® or GCI)	5	-	-	ns
tFPS	Frame Pulse Setup Time before C32i falling (ST-BUS ${ }^{\text {® }}$ or GCI)	5	-	-	ns
tFPW	Frame Pulse Width (ST-BUS ${ }^{\circledR}$ or GCI) Clock rate $=32.768 \mathrm{Mb} / \mathrm{s}$	13	-	31	ns
toeie	Clock to OEI Enable	3	-	9	ns
toeld	Clock to OEI Disable	3	-	9	ns
$t \mathrm{tr}, \mathrm{fl}^{(1)}$	Clock Rise/Fall Time	-	1	-	ns
tSOD	Clock to Valid Data	3	7	9	ns

NOTE:

1. Parameters verified under test conditions.
2. $C_{L}=300 \mathrm{pF}$

NOTES:

1) $\mathrm{OEPOL}=1$
2) $O E P O L=0$

Figure 18. OEI Bus Timing in ST-BUS ${ }^{\circledR}$ Mode

AC ELECTRICAL CHARACTERISTICS - RX TO TX INTERNAL BYPASS BIT

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS
BC (2	2	8	12	ns

6160 drw16
${ }^{\mathrm{t}} \mathrm{BC}=$ end to end chip delay

Figure 19. RX to TX Internal Bypass Bit

AC ELECTRICAL CHARACTERISTICS - MOTOROLA NON-MULTIPLEXED BUS ASYCHRONOUS TIMING MEMORY ACCESS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS
tadH	Address Hold after DS Rising	2	-	-	ns
tads	Address Setup from DSFalling	2	-	-	ns
tAKD ${ }^{(1)}$	AcknowledgmentDelay: Reading/WritingMemory	-	-	30	ns
takH ${ }^{(12,3)}$	AcknowledgmentHold Time	-	-	10	ns
tcSH	CSHold Time after DSRising	0	-	-	ns
tcss	CSSetup from DS Falling	0	-	-	ns
topr ${ }^{(1)}$	Data Setup from DTALOW on Read	2	-	-	ns
セHR(${ }^{(1)}$	Data Hold On Read	10	15	25	ns
DHW	Data Hold on Read	5	-	-	ns
tDSs	DataStrobeSetup Time	2	-	-	ns
tDSPW	Data Strobe on Write	6	-	-	ns
tRWH	R/WHold after DS Rising	3	-	-	ns
tRWs	R/WSetup from DSFalling	3	-	-	ns
tswD	Valid Data Delay on Write	2	-	-	ns

NOTES:

1. $C_{L}=30 \mathrm{pF}$
2. $R_{L}=1 \mathrm{~K}$
3. High-Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.
4. To achieve on clock cycle fastmemory access, this setup time, tDss should be met. Otherwise, worst-case memory access operation is determined by takd.

Figure 20. Motorola Non-Multiplexed Bus Asychronous Memory Access

AC ELECTRICAL CHARACTERISTICS - MOTOROLA NON-MULTIPLEXED BUS ASYNCRONOUS TIMING REGISTER ACCESS

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS
tadH	Address Hold after DSRising	2	-	-	ns
tads	Address Setup from DSFalling	2	-	-	ns
tAKD ${ }^{\prime \prime}$	AcknowledgmentDelay: Reading/WritingRegisters	-	-	40	ns
takH ${ }^{(123)}$	Acknowledgment Hold Time	-	-	20	ns
tCSH	CSHold Time after DS Rising	0	-	-	ns
tcss	CSSetup from DS Falling	0	-	-	ns
tDR(1)	Data Setup from DTALOW on Read	2	-	-	ns
tohri)	Data Hold On Read	10	15	25	ns
tDHW	Data Hold on Read	5	-	-	ns
tDSPW	DataStrobeonWrite	6	-	-	ns
也SW	DataSetup onWrite	10	-	-	ns
tRWH	R/WHold after DS Rising	3	-	-	ns
tswo	R/WSetup from DS Falling	3	-	-	ns

NOTES:

1. $C_{L}=30 \mathrm{pF}$
2. $R_{L}=1 K$
3. High-Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.
4. To achieve on clock cycle fastmemory access, this setup time, tDss should be met. Otherwise, worst-case memory access operation is determined by takD.

Figure 21. Motorola Non-Multiplexed Bus Asychronous Timing Register Access

AC ELECTRICAL CHARACTERISTICS - SYNCHRONOUS BUS TIMING

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS
tadH	Address Hold	3	-	-	ns
tads	Address Setup	3	-	-	ns
tBEH	Byte Enable Hold	3	-	-	ns
tBES	Btye Enable Setup	3	-	-	ns
tcD	Clock to Data	-	-	20	ns
[DHR ${ }^{(123)}$	Data Hold on Read	10	15	25	ns
DHW	Data Hold on Write	3	-	-	ns
tDSW	DataSetup onWrite	3	-	-	ns
tRWH	R/WHold	3	-	-	ns
tRWS	R/WSetup	3	-	-	ns
tsCSH	CS Hold	3	-	-	ns
tscss	CSSetup	3	-	-	ns

NOTES:

1. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
2. $R_{L}=1 K$
3. High-Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.
4. To achieve on clock cycle fastmemory access, this setup time, tDss should be met. Otherwise, worst-case memory access operation is determined by takD.

Figure 22. Synchronous Bus Timing

AC ELECTRICAL CHARACTERISTICS - BYTE ENABLE

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNITS
tadH	Address Hold	3	-	-	ns
tads	Address Setup	3	-	-	ns
tBEH	Byte Enable Hold	3	-	-	ns
tBES	Byte Enable Setup	3	-	-	ns
tcD	Clock to Data	-	-	20	ns
DHR ${ }^{(1)}$	Data Hold on Read	10	15	25	ns
tRWH	R/WHold	3	-	-	ns
tRWS	R/WSetup	3	-	-	ns
tscsi	CS Hold	3	-	-	ns
tscss	CSSetup	3	-	-	ns

NOTES:

1. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$
2. $R_{L}=1 \mathrm{~K}$
3. High-Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.

6160 drw19

Figure 23. Byte Enable

ORDERING INFORMATION

IDT XXXXXX Device Type $\frac{X X}{\text { Package }}$

Temperature Range

Commercial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Plastic Ball Grid Array (PBGA, BB208-1)

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit www.renesas.com/contact-us/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

[^0]: Examples for Input OffsetDelay Timing

