VERY LOW POWER CLOCK FOR FREESCALE MCU'S

IDT5U49319

General Description

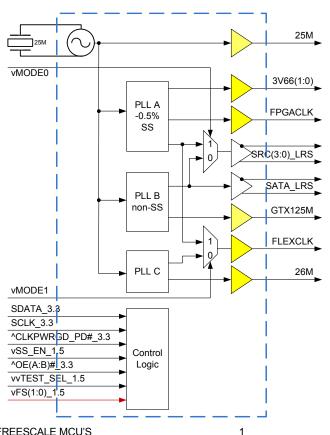
The IDT5U49319 is a very low power clock for Freescale MCU's. It uses a 1.5V core and Low-Power HCSL (LP-HCSL) differential outputs for minimal power consumption. The SATA and SRC outputs are PCIe Gen1/2 compatible.

Recommended Application

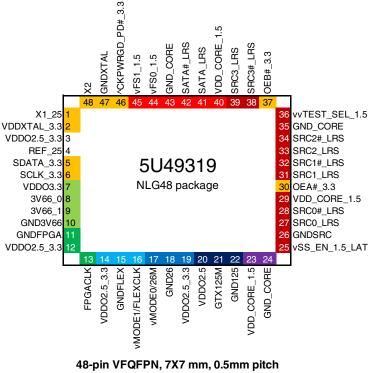
Clock Chip for Freescale P10xx & P20xx MCU's

Output Features

- 4 LP-HCSL SRC pairs w/integrated source terminations
- 1 LP-HCSL SATA pair w/integrated source terminations
- 1 25MHz 2.5V/3.3V LVCMOS output
- 2 66.66MHz 3.3V LVCMOS outputs
- 1 FPGA 33.33MHz 2.5V/3.3V LVCMOS output
- 1 FLEX clock 2.5V/3.3V LVCMOS output
- 1 125M GTX clock 2.5V LVCMOS output
- 1 26MHz 2.5V/3.3V LVCMOS output


Key Specifications

- SRC/SATA cycle-to-cycle jitter <85ps
- SRC/SATA PCIe Gen1/2 compliant


Block Diagram

Features/Benefits

- Various outputs are configurable to run in power down; supports Wake_On_LAN
- FPGA clock frequency is selectable via SMBus; allows low-power system standby
- Strapping pin sources SRC outputs from either spreading or non-spreading PLL; maximum system flexibility
- FLEX clock is pin selectable to be FPGA clock or USB PHY clock; maximum system flexibility
- TEST pin tri-states all outputs; speeds up board test
- External 25MHz crystal; supports tight ppm
- OE# pins; support SRC power management
- Low power differential clock outputs; reduced power and board space
- Differential outputs internally terminated to 100Ω differential impedance; reduced board space
- Space-saving 7x7mm 48-pin VFQFPN with 0.5mm pad pitch; reduced board space without the need for fine pitch assembly techniques

Pin Configuration

v prefix indicates internal 120KOhm pull down resistor

vv prefix indicates internal 60KOhm pull down resistor

prefix indicates internal 120KOhm pull up resistor

Color coding indicates the power domains in the device.

NOTE: ePAD is not electrically connected to the die and should be soldered to PCB Ground plane for specifed thermal performance

Singled-ended Output Power Management Table

CKPWRGD_ PD#_3.3	SMBus OE bit	SMBus PD# Run bit	REF_25	3V66_(1:0)	FPGACLK	GTX125M
1	Enable	1	Running	Running	Running	Running
1	Enable	0	Running	Running	Running	Running
0	Enable	1	Running	Running	Running	Running
0	Enable	0	Low	Low	Low	Low
Х	Disable	Х	Low	Low	Low	Low

SRC Power Management Table

CKPWRGD_ PD# 3.3	SMBus Register OE	OEA#_3.3	SRC(1:0)_LRS	OEB#_3.3	SRC(3:2)_LRS
FD#_3.3	Register OE		True/Comp	rue/Comp	True/Comp
1	Enable	0	Running	0	Running
1	Enable	1	Low/Low	1	Low/Low
0	Enable	Х	Low/Low	Х	Low/Low
Х	Disable	Х	Low/Low	Х	Low/Low

Note: OEA#_3.3 controls SRC(1:0)_LRS. OEB#_3.3 controls SRC(3:2)_LRS.

SATA Power Management Table

	•				
CKPWRGD_	SMBus	SATA_LRS			
PD#_3.3	Register OE	True/Comp			
1	Enable	Running			
0	Enable	Low/Low			
Х	Disable	Low/Low			

IDT® VERY LOW POWER CLOCK FOR FREESCALE MCU'S

Singled-ended Latched I/O and I/O Power Management Table

CKPWRGD_ PD#_3.3	SMBus Register OE	SMBus PD# Run bit	FLEXCLK	26M
1	Enable	1	Running	Running
1	Enable	0	Running	Running
1	Disable	Х	Low	Low
0	Enable	1	Running	Running
0	Enable	0	Hi-Z	Hi-Z
0	Disable	1	Low	Low
0	Disable	0	Hi-Z	Hi-Z

Note: After power is applied and *before* CKPWRGD_PD#_3.3 is asserted, these outputs are Hi-Z to allow for any pull up or pull down to be latched on the first high assertion of CKPWRGD_PD#_3.3.

Power Connections

Pin N	umber	Description	
VDD	GND	Description	
2	47	XTAL OSC Circuit, SMBus	
3	47	REF_25 Output	
7	10	3V66 ouputs and logic	
12	11	FPGACLK output and logic	
14	15	FLEXCLK output and logic	
19	18	26M output and logic	
20	22	GTX125M output and logic	
23	24	PLL C Analog	
29	26	SRC Outputs	
29	35	PLL A Analog	
40	43	PLL B Analog and SATA	

PLL A Spread Enable/Selection Table

vSS_EN_1.5 (B4b0)	SS1 (B4b2) ¹	SS0 (B4b1) ¹	SPREAD
0	Х	Х	OFF
1	0	0	-0.50%
1	0	1	-0.40%
1	1	0	-0.30%
1	1	1	0.00%

NOTES:

1. Default for SS(1:0) is 00

2. Only applies to SRC(3:0)_LRS if vMODE0 = 1

vMODE0 Definition Table

vMODE0	SRC(3:0)_LRS Source	
	Non-spread	
0	PLL B	
	Spread-Capable	
1	PLL A	

vMODE1 Defintion Table

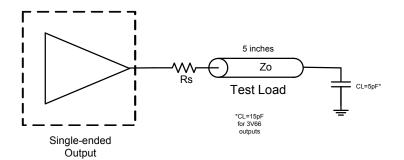
vMODE1	vFS1_1.5	vFS0_1.5	FLEXCLK Source	FLEXCLK Frequency (MHz)
0	0	0	PLL C	30.00
0	0	1	PLL C	48.00
0	1	0	PLL C	24.00
0	1	1	PLL C	12.00
1	0	0	PLL A	33.33
1	0	1	PLL A	16.67
1	1	0	PLL A	8.33
1	1	1	PLL A	4.17

FPGACLK Frequency Select Table

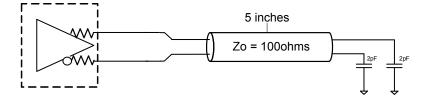
FPGA FS1 (B0b3)	FPGA FS0 (B0b2)	FPGACLK Frequency (MHz)
0	0	33.33
0	1	16.67
1	0	8.33
1	1	4.17

Pin Descriptions

Num.	Pin Name	Туре	Description		
	X1_25	IN	Crystal input, Nominally 25.00MHz.		
2	VDDXTAL_3.3	PWR	Power supply for XTAL, nominal 3.3V		
3	VDDO2.5_3.3	PWR	Power supply for outputs, either 2.5V or 3.3V.		
4	REF_25	OUT	25 MHz reference clock.		
5	SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.		
6	SCLK_3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.		
7	VDDO3.3	PWR	Power supply for outputs, nominal 3.3V.		
8	3V66_0	OUT	3.3V 66.66MHz clock output		
9	3V66_1	OUT	3.3V 66.66MHz clock output		
10	GND3V66	GND	Ground pin for the 3.3V 66MHz clocks		
11	GNDFPGA	GND	Ground pin for the FPGA clock output.		
	VDDO2.5_3.3	PWR	Power supply for outputs, either 2.5V or 3.3V.		
	FPGACLK	OUT	FPGA clock output. See frequency tables for values.		
14	VDDO2.5_3.3	PWR	Power supply for outputs, either 2.5V or 3.3V.		
15	GNDFLEX	GND	Ground pin for the FLEX clock output.		
			Mode Select Pin/FLEX clock output. This pin has an internal pull-down and is latched		
16	vMODE1/FLEXCLK	I/O	on the first power up of the device.		
			Mode Select Pin/26MHz output. This pin has an internal pull-down and is latched on the		
17	vMODE0/26M	1/0	first power up of the device.		
18	GND26	GND	Ground pin for the 26MHz output.		
19	VDDO2.5_3.3	PWR	Power supply for outputs, either 2.5V or 3.3V.		
20	VDD02.5	PWR	Power supply for outputs, nominally 2.5V.		
21	GTX125M	OUT	125MHz output		
22	GND125	GND	Ground pin for 125M output		
23	VDD_CORE_1.5	PWR	Power for PLL core components requiring 1.5V		
24	GND_CORE	GND	Ground pin for the PLL core.		
		LATCHED			
25	vSS_EN_1.5_LAT	IN	1 = -0.5% spread, $0 =$ Spread Off		
26	GNDSRC	GND	Ground pin for the SRC outputs		
		1	True clock of LP-HCSL SRC clock with integrated source termination. See Differential		
27	SRC0_LRS	OUT	Test Load for output impedance.		
			Complementary clock of LP-HCSL SRC clock with integrated source termination. See		
28	SRC0#_LRS	OUT	Differential Test Load for output impedance.		
29	VDD_CORE_1.5	PWR	Power for PLL core components requiring 1.5V		
			Active low input 3.3V tolerant for enabling output bank A.		
30	OEA#_3.3	IN	1 = disable output, 0 = enable output		
			True clock of LP-HCSL SRC clock with integrated source termination. See Differential		
31	SRC1_LRS	OUT	Test Load for output impedance.		
			Complementary clock of LP-HCSL SRC clock with integrated source termination. See		
32	SRC1#_LRS	OUT	Differential Test Load for output impedance.		
			True clock of LP-HCSL SRC clock with integrated source termination. See Differential		
33	SRC2_LRS	OUT	Test Load for output impedance.		
			Complementary clock of LP-HCSL SRC clock with integrated source termination. See		
34	SRC2#_LRS	OUT	Differential Test Load for output impedance.		
25					
35	GND_CORE	GND	Ground pin for the PLL core.		
26		LATCHED	TEST_SEL: latched input to select TEST MODE. Max input voltage is 1.5V		
36	vvTEST_SEL_1.5	IN	1 = All outputs are tri-stated for test		
			0 = All outputs behave normally.		
37	OEB#_3.3	IN	Active low input 3.3V tolerant for enabling output bank B.		
			1 =disable output, 0 = enable output		
38	SRC3#_LRS	OUT	Complementary clock of LP-HCSL SRC clock with integrated source termination. See		
		ļ	Differential Test Load for output impedance.		

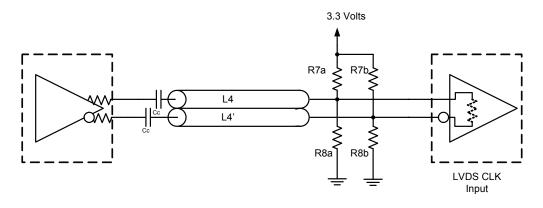

Pin Descriptions (cont.)

Num.	Pin Name	Туре	Description	
39	39 SRC3 LRS		True clock of LP-HCSL SRC clock with integrated source termination. See Differential	
- 59	SHO5_EHS	OUT	Test Load for output impedance.	
40	VDD_CORE_1.5	PWR	Power for PLL core components requiring 1.5V	
41	SATA LRS	OUT	True clock of LP-HCSL SATA clock with integrated source termination. See Differential	
41	SATA_LHS	001	Test Load for output impedance.	
42		OUT	Complementary clock of LP-HCSL SATA clock with integrated source termination. See	
42	SATA#_LRS	001	Differential Test Load for output impedance.	
43	GND_CORE	GND	Ground pin for the PLL core.	
44	vFS0_1.5 LATCHED IN	1.5V latched input pin for frequency selection. See Frequency Select Tables for Details.		
44		IN	This pin has an internal pull down.	
45	vFS1 1.5	LATCHED	1.5V latched input pin for frequency selection. See Frequency Select Tables for Details.	
45	VF31_1.5	IN	This pin has an internal pull down.	
			Input notifies device to sample latched inputs and start up on first high assertion. Low	
46	^CKPWRGD_PD#_3.3	IN	enters Power Down Mode, subsequent high assertions exit Power Down Mode. This pin	
			has internal pull-up resistor and is 3.3V tolerant.	
47	GNDXTAL	GND	GND for XTAL	
48	X2	OUT	Crystal output.	


Test Loads

Rs for Single-Ended Outputs Driving Test Loads

Output	Number of Loads	Rs
All except GTX125M	1	33Ω
GTX125M	1	23Ω



Differential Test Load

Driving LVDS inputs

		Value	
	Receiver has Receiver does not		
Component	termination	have termination	Note
R7a, R7b	10K ohm	140 ohm	
R8a, R8b	5.6K ohm	75 ohm	
Cc	0.1 uF	0.1 uF	
Vcm	1.2 volts	1.2 volts	

Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the IDT5U49319. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range.

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Maximum Supply Voltage	VDDxx_3.3	Supply Voltage			4.6	V	1
Maximum Supply Voltage	VDD_CORE_1.5	Supply Voltage			1.9	V	1
Maximum Supply Voltage	VDDO2.5_3.3	Supply Voltage			4.6	V	1
Maximum Input Voltage	V _{IH}	3.3V Inputs, including SMBus			4.6	V	1,2
Minimum Input Voltage	V _{IL}	Any Input	GND - 0.5			V	1
Storage Temperature	Ts	-	-65		150	°C	
JunctionTemperature	Tj	-			125	°C	
Input ESD protection	ESD prot	Human Body Model	2000			V	

NOTES on Absolute Max Parameters

¹ Operation under these conditions is neither implied, nor guaranteed.

² Maximum VIH is not to exceed VDD

AC Electrical Characteristics–SRCx_LRS, SATA_LRS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Clock Frequency	f			100.00		MHz	2,3
Synthesis error	ppm _{SSoff}	SRC/SATA		0		ppm	1,2,6
Synthesis end	ppm _{SSon}	SRC @ -0.5% spread	-150			ppm	1,2
Rising/Falling Edge Slew Rate	t _{SLEW}	B11[7:6] = '11', Dif. Measurement	2.0	3.1	4.0	V/ns	1,2
	SLEW	B11[7:6] = '00', Dif. Measurement	1.5	2.4	3.0	V/ns	1,2
Slew Rate Variation	t _{SLVAR}	Single-ended Measurement		9	20	%	1
Maximum Output Voltage	V _{HIGH}	Includes overshoot		812	1150	mV	1
Minimum Output Voltage	V _{LOW}	Includes undershoot	-300	-23		mV	1
Differential Voltage Swing	V _{SWING}	Differential Measurement	300			mV	1
Crossing Point Voltage	V _{XABS}	Single-ended Measurement	300	377	550	mV	1,3,4
Crossing Point Variation	V _{XABSVAR}	Single-ended Measurement		20	140	mV	1,3,5
Duty Cycle	DCYC	Differential Measurement	45	49.0	55	%	1
SRC Jitter - Cycle to Cycle	SRC _{JC2C}	Differential Measurement		21	85	ps	1
SATA Jitter - Cycle to Cycle	SATA _{JC2C}	Differential Measurement		22	85	ps	1
SRC[2:3] Skew	SKEW _{SRC23}	Differential Measurement		16	50	ps	1
SRC[0:1] Skew	SKEW _{SRC01}	Differential Measurement		8	50	ps	1

Notes:

¹ Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF_25 is at 25MHz

³ Slew rate measured through V_swing voltage range centered about differential zero

⁴ Vcross is defined at the voltage where Clock = Clock#.

⁵ Only applies to the differential rising edge (Clock rising, Clock# falling.)

⁶ At default SMBus settings.

Electrical Characteristics–Input/Supply/Common Output DC Parameters

 $T_{AMB} = 0 - 70^{\circ}C$; $V_{DD} = 3.3 V + -5\%$, $V_{DDCORE} = 1.5V + -5\%$, $V_{DDO2.5 3.3} = 2.5 - 3.3V + -5\%$; All outputs driving test loads (unless noted otherwise).

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
Ambient Operating Temp	T _{AMB}	-	0	25	70	°C	
	VDDxx_3.3	Supply Voltage	3.135	3.3	3.465	V	
Supply Voltage	VDD_CORE_1.5	Supply Voltage	1.425	1.5	1.575	V	
	VDDO_2.5_3.3	Supply Voltage	2.375	2.5	3.465	V	
Input High Voltage	V _{IHSE_3.3}	Single-ended 3.3V inputs	2.1		V _{DD} + 0.3	V	3
Input Low Voltage	V _{ILSE_3.3}	Single-ended 3.3V inputs	V _{SS} - 0.3		0.8	V	3
Latched Input High Voltage	V _{IH_LI}	Single-ended Latched Inputs	2.1		V _{DD} + 0.3	V	
Latched Input Low Voltage	V _{IL_LI}	Single-ended Latched Inputs	V _{SS} - 0.3		0.8	V	
Low Voltage Latched Input- High Voltage	V _{IH_FS}	Low Voltage inputs (xx_1.5)	1.2		VDD_CORE +0.3	V	
Low Voltage Latched Input- Low Voltage	V _{IL_FS}	Low Voltage inputs (xx_1.5)	V _{SS} - 0.3		0.4	V	
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}, V_{IN} = GND$	-5		5	uA	2
	I _{DDOP3.3}	IDDxx_3.3		26	31	mA	
Operating Supply Current	IDDOP1.5	IDD_CORE_1.5		33	40	mA	
	I _{DDO2.5_3.3}	IDDO_2.5_3.3		17	21	mA	
	I _{DDPD3.3}	PD# = 0, IDDxx_3.3		0.5	1	mA	5
Powerdown Current	I _{DDPD1.5}	PD# = 0, IDD_CORE_1.5		0.4	1	mA	5
(PD# RUN disabled)	I _{DDPDO2.5_3.3}	PD# = 0, IDDO2.5 3.3 Rails		0.1	1	mA	5
Standby Current	IDDPDRUN3.3	PD# = 0, IDDxx 3.3		27	32	mA	6
(PD# RUN enabled, all runnable	DDPDRUN1.5	PD# = 0, IDD_CORE_1.5		16	19	mA	6
outputs running)	I _{DDRUNO2.5_3.3}	PD# = 0, IDDO_2.5_3.3		17	21	mA	6
Input Frequency	F _i		23	25	27	MHz	4
Pin Inductance	L _{pin}			5	7	nH	
	C _{IN}	Logic Inputs	1.5	3	5	pF	
Input Capacitance	C _{OUT}	Output pin capacitance	1.0	5	6	pF	
	CINX	X1 & X2 pins		5	6	pF	
Clk Stabilization	T _{STAB}	From VDD Power-Up or de-assertion of PD to 1st clock		1.1	1.8	ms	
Tstop_OE_off	T _{OEOFF}	Output stop after OEx#_3.3 deasserted	1	2	3	Clocks	
Trun_OE_on		Output run after OEx#_3.3 asserted	1	2	3	Clocks	
Tfall_SE	T _{OEON}	· · ·	1	~			1
—	T _{FALL}	Fall/rise time of all 3.3V control inputs from 20-80%				ns	1
Trise_SE	T _{RISE}	2000/0	27		10	ns	
SMBus Voltage	V _{DD}		2.7		3.3	V	
Low-level Output Voltage	V _{OLSMB}	@ I _{PULLUP}			0.4	V	
Current sinking at V _{OLSMB} = 0.4 V	I _{PULLUP}	SMB Data Pin	4			mA	
SCLK/SDATA Clock/Data Rise Time	T _{RI2C}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	
SCLK/SDATA Clock/Data Fall Time	T _{FI2C}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	
Maximum SMBus Operating Frequency	F _{SMBUS}				100	kHz	
Spread Spectrum Modulation Frequency	f _{SSMOD}	Triangular Modulation	30	31.5	33	kHz	

NOTES on DC Parameters: (unless otherwise noted, guaranteed by design and characterization, not 100% tested in production).

¹ Signal is required to be monotonic in this region.

² Input leakage current does not include inputs with pull-up or pull-down resistors

³ 3.3V referenced inputs are: OEx#_3.3, SCLK, SDATA, and CLKPWRGD_PD_3.3#

 $^{\rm 4}$ For margining purposes only. Normal operation should have Fin =25MHz

⁵ Standard powerdown with Byte 1, bit 7 = 0

⁶ Powerdown with Byte 1, bit 7 = 1 (default).

IDT® VERY LOW POWER CLOCK FOR FREESCALE MCU'S

Electrical Characteristics–Phase Jitter, SRC_LRS, SATA_LRS outputs

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	INDUSTRY SPEC LIMIT	UNITS	NOTES
	t _{jphPCle1}	PCIe Gen 1 REFCLK phase jitter		31	48	86	ps	1,2,3
	t	PCIe Gen 2 REFCLK phase jitter		1.0	1.2	3	ps	1,2,3
Jitter, Phase	t _{jphPCle2Lo}	Lo-band content		1.0	1.2	3	(RMS)	1,2,3
	+	PCIe Gen 2 REFCLK phase jitter		2.1	2.4	3.1	ps	1,2,3
	ljphPCle2Hi	Hi-band content		2.1	2.4	5.1	(RMS)	1,2,3

Notes on Phase Jitter:

¹ See http://www.pcisig.com for complete specs. Guaranteed by design and characterization, not tested in production.

² Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1⁻¹²

³ Applies to SRC and SATA outputs.

Electrical Characteristics-REF_25

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Clock Frequency	f			25.00		MHz	2,3
Crystal Frequency Error	ppm	Including all aging and tuning effects	-50		50	ppm	1,2
Output High Voltage	V _{OH}	VDDO = 3.3V, I _{OH} = -1 mA	2.2			V	1
Output Low Voltage	V _{OL}	VDDO = 3.3V, I _{OL} = 1 mA			0.4	V	1
Output High Voltage	V _{OH}	VDDO = 2.5V, I _{OH} = -100 μA	2.2			V	1
Output Low Voltage	V _{OL}	VDDO = 2.5V, I _{OL} = 100 µA			0.4	V	1
	t _{SLEW00}	'00' Slowest Slew Rate	0.5	1.2	2.1	V/ns	1,3,4
Slew Rate	t _{SLEW01}	'01' Slow Slew Rate	0.7	1.6	2.5	V/ns	1,3,4
VDDO = 2.5V	t _{SLEW10}	'10' Fast Slew Rate	0.8	1.7	2.7	V/ns	1,3,4
	t _{SLEW11}	'11' Fastest Slew Rate	0.9	1.8	2.8	V/ns	1,3,4
	t _{SLEW00}	'00' Slowest Slew Rate	0.9	1.7	2.6	V/ns	1,3,4
Slew Rate	t _{SLEW01}	'01' Slow Slew Rate	1.1	2.2	3.3	V/ns	1,3,4
VDDO = 3.3V	t _{SLEW10}	'10' Fast Slew Rate	1.3	2.3	3.5	V/ns	1,3,4
	t _{SLEW11}	'11' Fastest Slew Rate	1.5	2.6	4	V/ns	1,3,4
Duty Cycle	d _{t1}	VT = VDDO/2	40	50.3	60	%	1
Pin to Pin Skew	t _{skew}	VT = VDDO/2		n/a		ps	1
Jitter, Peak period jitter	t _{ipeak}	VT = VDDO/2		64	±150	ps	1

Electrical Characteristics-3V66

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Clock Frequency	f			66.66		MHz	2,3
Synthesis error	ppm _{SSoff}	Spread off		0		ppm	1,2,5
Synthesis end	ppm _{SSon}	Spread on		-150		ppm	1,2,5
Output High Voltage	V _{OH}	VDDO = 3.3V, I _{OH} = -1 mA	2.2			V	1
Output Low Voltage	V _{OL}	VDDO = 3.3V, I _{OL} = 1 mA			0.4	V	1
	t _{SLEW00}	'00' Slowest Slew Rate	1.3	2.1	3	V/ns	1,3,4
Slew Rate	t _{SLEW01}	'01' Slow Slew Rate	1.5	2.3	3.2	V/ns	1,3,4
VDDO = 3.3V	t _{SLEW10}	'10' Fast Slew Rate	1.7	2.4	3.4	V/ns	1,3,4
	t _{SLEW11}	'11' Fastest Slew Rate	1.9	2.6	3.9	V/ns	1,3,4
Duty Cycle	d _{t1}	VT = VDDO/2	40	48.2	60	%	1
Pin to Pin Skew	t _{skew}	VT = VDDO/2		69.5	120	ps	1
Jitter, Peak period jitter	t _{jpeak}	VT = VDDO/2, SS off		53.6	±150	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	VT = VDDO/2		68	100	ps	1

Electrical Characteristics-FPGACLK

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
		FS(1:0) = 00		33.33		MHz	2,3
Clock Frequency	f	FS(1:0) = 01		16.67		MHz	2,3
clock riequolog		FS(1:0) = 10		8.33		MHz	2,3
		FS(1:0) = 11		4.17		MHz	2,3
Synthesis error	ppm _{SSoff}	Spread off		0			1,2,5
	ppm _{SSon}	Spread on		-150	ppm	1,2,5	
Output High Voltage	V _{OH}	VDDO = 3.3V, I _{OH} = -1 mA	2.2			V	1
Output Low Voltage	V _{OL}	VDDO = 3.3V, I _{OL} = 1 mA			0.4	V	1
Output High Voltage	V _{OH}	VDDO = 2.5V, Ι _{OH} = -100 μA	2.2			V	1
Output Low Voltage	V _{OL}	VDDO = 2.5V, I _{OL} = 100 µA			0.4	V	1
	t _{SLEW00}	'00' Slowest Slew Rate	0.5	1.1	1.9	V/ns	1,3,4
Slew Rate	t _{SLEW01}	'01' Slow Slew Rate	0.7	1.4	2.3	V/ns	1,3,4
VDDO = 2.5V	t _{SLEW10}	'10' Fast Slew Rate	0.8	1.6	2.4	V/ns	1,3,4
	t _{SLEW11}	'11' Fastest Slew Rate	0.9	1.7	2.5	V/ns	1,3,4
	t _{SLEW00}	'00' Slowest Slew Rate	1	1.6	2.3	V/ns	1,3,4
Slew Rate	t _{SLEW01}	'01' Slow Slew Rate	1.4	2.1	3.1	V/ns	1,3,4
VDDO = 3.3V	t _{SLEW10}	'10' Fast Slew Rate	1.5	2.3	3.4	V/ns	1,3,4
	t _{SLEW11}	'11' Fastest Slew Rate	1.6	2.6	3.8	V/ns	1,3,4
Duty Cycle	d _{t1}	VT = VDDO/2	40	49.2	60	%	1
Pin to Pin Skew	t _{skew}	VT = VDDO/2		n/a		ps	1
Jitter, Peak period jitter	t _{jpeak}	VT = VDDO/2, SS off		32	±150	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	VT = VDDO/2		45	100	ps	1

Electrical Characteristics-FLEXCLK

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
		FS(1:0)_1.5 = 00		30.00		MHz	2,3
Clock Frequency	f	FS(1:0)_1.5 = 01		48.00		MHz	2,3
MODE1 = 0		FS(1:0)_1.5 = 10		24.00		MHz	2,3
		FS(1:0)_1.5 = 11		12.00		MHz	2,3
	_	$FS(1:0)_{1.5} = 00$		33.33		MHz	2,3
Clock Frequency MODE1 = 1	f	$FS(1:0)_{1.5} = 01$	-	16.67		MHz	2,3
MODET = T		FS(1:0)_1.5 = 10 FS(1:0) 1.5 = 11		8.33 4.167		MHz MHz	2,3 2,3
0 // /	ppm _{SSoff}	MODE0 or MODE1 with SS/off		0		ppm	1,2,5
Synthesis error	ppm _{SSon}	MODE1 with SS/on		-150		ppm	1,2,5
Output High Voltage	V _{OH}	VDDO = 3.3V, I _{OH} = -1 mA	2.2			V	1
Output Low Voltage	V _{OL}	VDDO = 3.3V, I _{OL} = 1 mA			0.4	V	1
Output High Voltage	V _{OH}	VDDO = 2.5V, I _{OH} = -100 µA	2.2			V	1
Output Low Voltage	V _{OL}	VDDO = 2.5V, I _{OL} = 100 µA			0.4	V	1
	t _{SLEW00}	'00' Slowest Slew Rate	0.5	1.2	2.2	V/ns	1,3,4
Slew Rate	t _{SLEW01}	'01' Slow Slew Rate	0.7	1.6	2.6	V/ns	1,3,4
VDDO = 2.5V	t _{SLEW10}	'10' Fast Slew Rate	0.8	1.7	2.7	V/ns	1,3,4
	t _{SLEW11}	'11' Fastest Slew Rate	1	1.9	2.8	V/ns	1,3,4
	t _{SLEW00}	'00' Slowest Slew Rate	1	1.8	2.7	V/ns	1,3,4
Slew Rate	t _{SLEW01}	'01' Slow Slew Rate	1.5	2.3	3.2	V/ns	1,3,4
VDDO = 3.3V	t _{SLEW10}	'10' Fast Slew Rate	1.7	2.5	3.5	V/ns	1,3,4
	t _{SLEW11}	'11' Fastest Slew Rate	1.8	2.8	3.9	V/ns	1,3,4
Duty Cycle	d _{t1}	VT = VDDO/2	40	49.2	60	%	1
Pin to Pin Skew	t _{skew}	VT = VDDO/2		n/a		ps	1
Jitter, Peak period jitter	t _{jpeak}	VT = VDDO/2		34	±150	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	VT = VDDO/2		52	100	ps	1

IDT® VERY LOW POWER CLOCK FOR FREESCALE MCU'S

10

IDT5U49319

REV D 043014

Electrical Characteristics–26M

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Clock Frequency	f			26.00		MHz	2,3
Synthesis error	ppm			0		ppm	1,2,5
Output High Voltage	V _{OH}	VDDO = 3.3V, I _{OH} = -1 mA	2.2			V	1
Output Low Voltage	V _{OL}	VDDO = 3.3V, I _{OL} = 1 mA			0.4	V	1
Output High Voltage	V _{OH}	VDDO = 2.5V, I _{OH} = -100 µA	2.2			V	1
Output Low Voltage	V _{OL}	VDDO = 2.5V, I _{OL} = 100 μA			0.4	V	1
	t _{SLEW00}	'00' Slowest Slew Rate	0.5	1.2	2.2	V/ns	1,3,4
Slew Rate	t _{SLEW01}	'01' Slow Slew Rate	0.7	1.6	2.7	V/ns	1,3,4
VDDO = 2.5V	t _{SLEW10}	'10' Fast Slew Rate	0.8	1.8	2.8	V/ns	1,3,4
	t _{SLEW11}	'11' Fastest Slew Rate	0.9	1.9	2.9	V/ns	1,3,4
	t _{SLEW00}	'00' Slowest Slew Rate	1	1.5	2.8	V/ns	1,3,4
Slew Rate	t _{SLEW01}	'01' Slow Slew Rate	1.3	1.9	3.3	V/ns	1,3,4
VDDO = 3.3V	t _{SLEW10}	'10' Fast Slew Rate	1.4	2.0	3.6	V/ns	1,3,4
	t _{SLEW11}	'11' Fastest Slew Rate	1.6	2.2	4	V/ns	1,3,4
Duty Cycle	d _{t1}	VT = VDDO/2	40	49.2	60	%	1
Pin to Pin Skew	t _{skew}	VT = VDDO/2		n/a		ps	1
Jitter, Long Term	t _{jTIE}	TIE over any 10us interval, $V_T = VDDO/2$		0.6	1	ns	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	VT = VDDO/2		79	200	ps	1

Electrical Characteristics–GTX125M

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Clock frequency	f			125.00		ns	2,3
Synthesis error	ppm			0	•	ppm	1,2,5
Output High Voltage	V _{OH}	VDDO = 2.5V, Ι _{ΟΗ} = -100 μΑ	2.2			V	1
Output Low Voltage	V _{OL}	VDDO = 2.5V, I _{OL} = 100 µA			0.3	V	1
Slew Rate VDDO = 2.5V	t _{SLEW}	Measured between 0.7V and 1.7 V	1.5	2.1	3	V/ns	1,6
Duty Cycle	d _{t1}	VT = VDDO/2	47	50	53	%	1
Pin to Pin Skew	t _{skew}	VT = VDDO/2		n/a		ps	1
Jitter, Peak period jitter	t _{jpeak}	VT = VDDO/2		56	±150	ps	1

Notes for single-ended outputs

¹ Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Frequency specifications are guaranteed assuming that REF_25 is at 25MHz

³ At default SMBus settings

⁴ 0.8V and 2.0V thresholds.

⁵ This is the frequency error with respect to the crystal frequency. If the crystal is+25ppm, an output with 0ppm synthesis error will be +25ppm, too.

General SMBus Serial Interface Information

How to Write

- Controller (host) sends a start bit
- · Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N+X-1
- IDT clock will acknowledge each byte one at a time
- Controller (host) sends a Stop bit

How to Read

- Controller (host) will send a start bit
- Controller (host) sends the write address
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- · Controller (host) will send a separate start bit
- · Controller (host) sends the read address
- IDT clock will acknowledge
- IDT clock will send the data byte count = X
- IDT clock sends Byte N+X-1
- IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8)
- Controller (host) will need to acknowledge each byte
- Controller (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Col	ntroller (Host)		IDT (Slave/Receive
Т	starT bit		
S	ave Address		
WR	WRite		
			ACK
Beg	inning Byte = N		
			ACK
RT	Repeat starT		
S	ave Address		
RD	ReaD		
			ACK
			Data Byte Count=
	ACK		
			Beginning Byte N
	ACK		
		fe	0
	0	X Byte	0
	0	^	0
	0	-	
	1		Byte N + X - 1
Ν	Not acknowledge	-	
Р	stoP bit		

Index Block Write Operation Controller (Host) IDT (Slave/Receiver) Т starT bit Slave Address WR WRite ACK Beginning Byte = N ACK Data Byte Count = X ACK Beginning Byte N ACK 0 \times Byte 0 0 0 0 0 Byte N + X - 1 ACK Ρ stoP bit

Note: SMBUS address = C2/C3

Byte 0	Name	Control Function	Туре	0	1	Default
Bit 7	FS1_1.5	Frequency Select Readback	R		Latch w/pd	
Bit 6	FS0_1.5	Frequency Select Readback	R	See Ta	ible 3	Latch w/pd
Bit 5	MODE1	Mode 1 Readback	R			
Bit 4	MODE0	Mode 0 Readback	R	See Ta	See Table 2	
Bit 3	FPGA FS1	FPGACLK Freq. Select	RW	See Table 4.		0
Bit 2	FPGA FS0	FPGACLK Freq. Select	RW			0
Bit 1		Reserve	d			0
Bit 0	Power Down Configuration	Forces "cold" start during assertion of PD#	RW	Resets Smbus registers to Power up Default and Relatches All Latched inputs.	Normal PD# mode, all SMBus values are maintained as long as power rails are maintained.	1

SMBus Table: Frequency Select and MODE Readback Registers

Notes:

1. Latch w/pd means an input latched on first assertion of CKPWRGD pin that also has an internal pull down.

2. Byte 0, bit 0 must only be set to 0 in conjunction with Byte 1, bit 7 set to 0.

SMBus Table: PD# Run Mode Control Register

Byte 1	Name	Control Function	Туре	0	1	Default
Bit 7	PD# RUN EN	Enables PD# Run Funct.	RW	No outputs run in PD#	PD# Run Enabled	1
Bit 6	REF_25 RUN	REF_25 Runs in PD#	RW	Does not run in PD#	Runs in PD#	1
Bit 5	3V66_1 RUN	3V66_1 Runs in PD#	RW	Does not run in PD#	Runs in PD#	1
Bit 4	3V66_0 RUN	3V66_0 Runs in PD#	RW	Does not run in PD#	Runs in PD#	1
Bit 3	FPGACLK RUN	FPGACLK Runs in PD#	RW	Does not run in PD#	Runs in PD#	1
Bit 2	GTX125M RUN	GTX125M Runs in PD#	RW	Does not run in PD#	Runs in PD#	1
Bit 1	FLEXCLK RUN	FLEXCLK Runs in PD#	RW	Does not run in PD#	Runs in PD#	1
Bit 0	26M RUN	26M Runs in PD#	RW	Does not run in PD#	Runs in PD#	1

SMBus Table: Output Enable Control Register

Byte 2	Name	Control Function	Туре	0	1	Default	
Bit 7	REF_25 OE	Output Enable	RW	Disable	Enable	1	
Bit 6	FLEXCLK OE	Output Enable	RW	Disable	Enable	1	
Bit 5	Reserved						
Bit 4	FPGACLK OE	Output Enable	RW	Disable	Enable	1	
Bit 3	26M OE	Output Enable	RW	Disable	Enable	1	
Bit 2	3V66_1 OE	Output Enable	RW	Disable	Enable	1	
Bit 1	3V66_0 OE	Output Enable	RW	Disable	Enable	1	
Bit 0	GTX125M	Output Enable	RW	Disable	Enable	1	

SMBus Table: Output Enable Control Register

Byte 3	Name	Control Function	Туре	0	1	Default	
Bit 7	Reserved						
Bit 6	Reserved						
Bit 5	Reserved						
Bit 4	SRC3 OE	Output Enable	RW	Disable	Enable	1	
Bit 3	SRC2 OE	Output Enable	RW	Disable	Enable	1	
Bit 2	SRC1 OE	Output Enable	RW	Disable	Enable	1	
Bit 1	SRC0 OE	Output Enable	RW	Disable	Enable	1	
Bit 0	SATA OE	Output Enable	RW	Disable	Enable	1	

SMBus Table: Spread Control Register

Byte 4	Name	Control Function		0	1	Default	
Bit 7		Reserve	ed			1	
Bit 6		Reserve	ed			1	
Bit 5		Reserved					
Bit 4		Reserved					
Bit 3		Reserve	ed			1	
Bit 2	SS1	PLL A Spread Amount	RW	Soo To	blo 1	0	
Bit 1	SS0	PLL A Spread Amount	RW	See Table 1		0	
Bit 0	SS_EN_1.5	PLL A Spread Enable	RW	Spread OFF	Spread ON	Latch input w/pd	

SMBus Table: Output Voltage Overide Register

Byte 5	Name	Control Function		0	1	Default	
Bit 7	Reserved						
Bit 6		Reserved					
Bit 5	Reserved						
Bit 4	V Detect Override	En. SW Overide of HW V Detect	RW	Hardware Detect	Software Override	0	
Bit 3	26M V Set	26M VDDO Overide	RW	3.3V	2.5V	0	
Bit 2	FLEXCLK V Set	FLEXCLK VDDO Overide	RW	3.3V	2.5V	0	
Bit 1	FPGACLK V Set	FPGACLK VDDO Overide	RW	3.3V	2.5V	0	
Bit 0	REF_25 V Set	REF_25 VDDO Overide	RW	3.3V	2.5V	0	

SMBus Table: Output Voltage Detect Readback Register

Byte 6	Name	Control Function	Туре	0	1	Default
Bit 7	Reserved					
Bit 6	Reserved					
Bit 5	Reserved					
Bit 4		Reserve	d			1
Bit 3	26M V Detect	26M VDDO Detect	R	3.3V	2.5V	Latch
Bit 2	FLEXCLK V Detect	FLEXCLK VDDO Detect	R	3.3V	2.5V	Latch
Bit 1	FPGACLK V Detect FPGACLK VDDO Detect R 3.3V 2.5V					
Bit 0	REF_25 V Dectect	REF_25 VDDO Detect	R	3.3V	2.5V	Latch

SMBus Table: Revision and Vendor ID Register

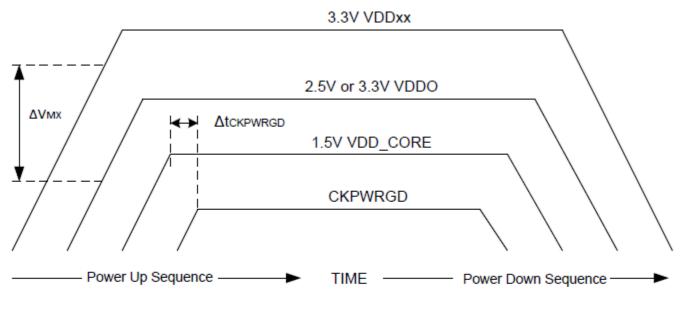
Byte 7	Name	Control Function	Туре	0	1	Default
Bit 7	RID3		R	A rev = 0000		0
Bit 6	RID2	Revision ID	R			0
Bit 5	RID1		R			0
Bit 4	RID0		R		0	
Bit 3	VID3		R			0
Bit 2	VID2	VENDOR ID	R	0001 - 1	0001 = ICS/IDT	
Bit 1	VID1	VENDOR ID	R	0001 - 103/101		0
Bit 0	VID0		R			1

SMBus Table: Reserved Register

Byte 8	Name	Control Function	Туре	0	1	Default	
Bit 7	Reserved						
Bit 6	Reserved						
Bit 5	Reserved						
Bit 4	Reserved						
Bit 3	Reserved						
Bit 2		Reser	ved			0	
Bit 1		Reser	ved			0	
Bit 0	Reserved						
DT® VERY LOW	DT® VERY LOW POWER CLOCK FOR FREESCALE MCU'S 14 IDT5U49319 R						

SMBus Table: Byte Count Register

Byte 9	Name	Control Function	Туре	0	1	Default	
Bit 7	Reserved						
Bit 6	Reserved						
Bit 5	Reserved						
Bit 4	BC4		RW			0	
Bit 3	BC3		RW	Writing to this registe	er will configure how	1	
Bit 2	BC2	Byte Count Programming	RW	many bytes will be rea	d back, default is 0A	0	
Bit 1	BC1		RW	= 10 b	ytes.	1	
Bit 0	BC0		RW			0	


SMBus Table: Slew Rate Control Register

Byte 10	Name	Control Function	Туре	0	1	Default
Bit 7	26M SLEW	Slew Rate Control	RW	00 = Slowest	01 =Slow	1
Bit 6		Siew Rate Control	RW	10 = Fast	11 = Fastest	1
Bit 5	REF_25 SLEW	Slew Rate Control	RW	00 = Slowest	01 =Slow	1
Bit 4			RW	10 = Fast	11 = Fastest	1
Bit 3	FLEXCLK SLEW	Slew Rate Control	RW	00 = Slowest	01 =Slow	1
Bit 2			RW	10 = Fast	11 = Fastest	1
Bit 1	FPGACLK SLEW	Slew Rate Control	RW	00 = Slowest	01 =Slow	1
Bit 0			RW	10 = Fast	11 = Fastest	1

SMBus Table: Slew Rate Control Register

Byte 11	Name	Control Function	Туре	0	1	Default
Bit 7	SATA SLEW	Differential Slew Rate	RW	0=Slow	1=Fast	1
Bit 6	SRC SLEW	Differential Slew Rate	RW	0=Slow	1=Fast	1
Bit 5	Reserved					
Bit 4	Reserved					
Bit 3	3V66 1 SLEW	Slew Rate Control	RW	00 = Slowest	01 =Slow	1
Bit 2	3V00_13LLVV	Siew Rale Control	RW	10 = Fast	11 = Fastest	0
Bit 1	3V66 0 SLEW	Slew Rate Control	RW	00 = Slowest	01 =Slow	1
Bit 0	3V00_0 3LLVV		RW	10 = Fast	11 = Fastest	0

Power Sequencing

Notes:

- The maximum difference (ΔVMX) between any two voltages is 0.7V if the lower power supply is powered up first.
- There are no timing requirements between the higher and lower voltages if the higher voltages power up first.
- The minimum time before CKPWRGD can be set (ΔtckpwRgD = 0) is 0 sec from the last power supply that is powered up.

Recommended Crystal Characteristics (3225 package)

PARAMETER	VALUE	UNITS	NOTES
Frequency	25	MHz	1
Resonance Mode	Fundamental	-	1
Frequency Tolerance @ 25°C	±20	PPM Max	1
Frequency Stability, ref @ 25°C Over Operating Temperature Range	±20	PPM Max	1
Temperature Range (commerical)	0~70	°C	1
Temperature Range (industrial)	-40~85	°C	2
Equivalent Series Resistance (ESR)	50	Ω Max	1
Shunt Capacitance (C _O)	7	pF Max	1
Load Capacitance (CL)	8	pF Max	1
Drive Level	0.3	mW Max	1
Aging per year	±5	PPM Max	1

Notes:

1. IDT 603-25-150JA4C or FOX 603-25-150 .

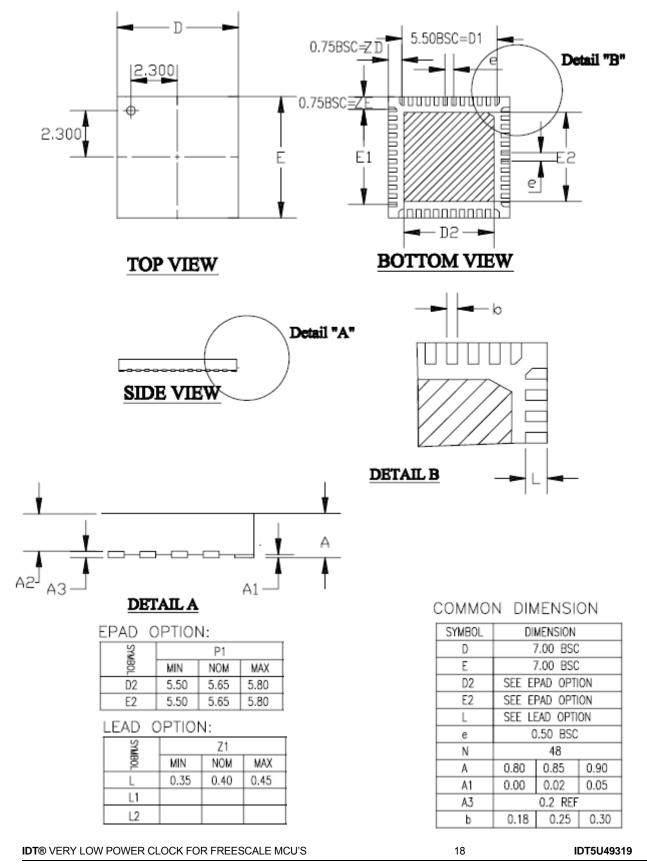
2. For I-temp, IDT 603-25-150JA4I or FOX 603-25-261.

Thermal Characteristics

PARAMETER	SYMBOL	CONDITIONS	PKG	TYP.	UNITS	NOTES
Thermal Resistance	θ_{JC}	Junction to Case		19	°C/W	1
	θ_{Jb}	Junction to Base		0.47	°C/W	1
	θ _{JA0}	Junction to Air, still air	NLG48	30	°C/W	1
	θ_{JA1}	Junction to Air, 1 m/s air flow	NLG40	23.1	°C/W	1
	θ_{JA3}	Junction to Air, 3 m/s air flow		19.8	°C/W	1
	θ_{JA5}	Junction to Air, 5 m/s air flow		18.5	°C/W	1

¹ePad soldered to board

Marking Diagram


● LOT

Notes:

- 1. 'G' after the two-letter package code denotes RoHS compliant package.
- 2. 'YYWW' is the last two digits of the year and week that the part was assembled.
- 3. '\$' denotes assembly mark code.
- 4. 'LOT' is the lot number.

Package Outline and Package Dimensions (NLG48)

(IDT PSC-4203-02, Options P1 and Z1)

REV D 043014

Ordering Information

Part	Order Number	Shipping Packaging	Package	Temperature
5U49319NLG	5U49319NLG	Trays	48-pin VFQFPN	0 to +70° C
5U49319NLG8	5U49319NLG8	Tape and Reel	48-pin VFQFPN	0 to +70° C

"G" after the two-letter package code denotes Pb-Free configuration, RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History

Rev.	Issue Date	Initiator	Description	Page #
Α	10/24/2013	RDW	Initial release	
В	11/1/2013	RDW	Corrected Power Connections table which had pin 14/15 swapped.	3
С	11/8/2013	RDW	Change color coding for pins 14-16 and 17-19 to indicate they are separate power groups.	2
			1. Updated Electrical Tables	
D	4/30/2014	RDW	2. Move to Final.	

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit <u>www.renesas.com/contact-us/</u>.