RE N ESAS Application Note

Renesas RA Family
Injecting Plaintext User Keys

Introduction

Cryptography is important because it provides the tools to implement solutions for authenticity, confidentiality,
and integrity, which are vital aspects of any security solution. In modern cryptographic systems, the security
of the system no longer depends on the secrecy of the algorithm used but rather on the secrecy of the keys.

There are different types of security engines across the various RA Family MCUs. The MCU’s hardware
user’s manual identifies the security engine that is provided in the MCU.

The security engines can operate in two different modes, called Compatibility mode and Protected mode.
The application note Renesas SCE Operational Modes (R11AN0498) explains the definition of the two
modes and their use cases. The key injection capabilities, in brief, are:

e Compatibility mode — both plaintext and secure key injection are supported. All security engines used in
RA Family MCUs support this mode.

e Protected mode — only secure key injection is supported. As such, Protected mode does not support the
capabilities described in this application project. The current list of security engines that support
Protected mode comprises the Secure Crypto Engine 9 (SCE9) and the Renesas Secure IP RSIP-E51A.

With this release, this application project demonstrates the following plaintext key injection processes:

¢ RSIP-E51A Compatibility mode AES-256 plaintext key injection using RA8SM1 MCU

e SCE9 Compatibility mode AES-256 plaintext key injection using RA6M4 MCU

e SCE7 Compatibility mode AES-128 plaintext key injection using RA6M3 MCU. Compatibility mode
secure key injection for SCE5 and SCE5_B uses identical APIs to SCE7.

Required Resources
Development tools and software

e e?studio ISDE v2023-10
e Renesas Flexible Software Package (FSP) v5.1.0
e SEGGER J-link® USB driver

The above three software components: the FSP, J-Link USB drivers, and e? studio are bundled in a
downloadable platform installer available on the FSP webpage at renesas.com/ra/fsp.

Hardware

o EK-RA8M1, Evaluation Kit for RA8M1 MCU Group ((http://www.renesas.com/ra/ek-ra8m1)
o EK-RA6M4, Evaluation Kit for RA6M4 MCU Group (http://www.renesas.com/ra/ek-ra6m4)
o EK-RA6M3, Evaluation Kit for RA6M3 MCU Group (http://www.renesas.com/ra/ek-rabma3)
e Workstation running Windows® 10 and Tera Term console, or similar application.

e Two USB device cables (type-A male to micro-B male)

Prerequisites and Intended Audience

This application note assumes you have some experience with the Renesas e? studio ISDE and Arm®
TrustZone® based development models with e? studio. The application note assumes that you have some
knowledge of RA Family MCU security features. In addition, a prerequisite reading is application note
Renesas SCE Operational Mode (R11AN0498).

The intended audience includes product developers, product manufacturers, product support, or end users
who are involved with any stage of the MCU plaintext key injection of the RA Family MCUs.

R11AN0473EU0200 Rev.2.00 Page 1 of 18
Jan.10.24 RENESAS

http://www.renesas.com/fsp
http://www.renesas.com/ra/ek-ra8m1
http://www.renesas.com/ra/ek-ra6m4
http://www.renesas.com/ra/ek-ra6m3

Renesas RA Family Injecting Plaintext User Keys

Contents

1. Root of Trust and its ProteCtion ... 3
1.1 What iS ROOE Of TIUST..... ettt ettt e e e sttt e e e snte e e e e anbeeeesanbeeeesanbeeaeaan 3
1.2 Protecting the ROO Of TIUSTccciiieiee e e e e e e e e e e e s s e raaeeaaeeas 3
1.3 Introduction to Secure Crypto Engine and Associated Keys.........ccuvueviieiiiiiiiiieie e 3
2. Plaintext User Key INJECLONoouiiiiii e 5
2.1 Plaintext User Key INJection FEAtUrESccoooiei i 5
2.1.1 Advantages of Key Wrapping over Key ENCIYPLioNcooiiiiiiiiiiiie e 6
2.1.2 Advantages of Key Wrapping using MCU HUK ... 6
2.2 Plaintext User Key INJECtION USE CaSES.........cuiiiiiiiiiiiiiia ittt 7
3. Example Project for RA6M4 (SCE9) with AES User Key Handlingccoooeviiiiiieinncennnnne, 8
3.1 FSP API Used in the Plaintext Key WIrap.........oouiii i 10
3.2 Import and Compile the Example Project......... ..o e e 10
3.3 Setting UP the HardwWare...........o.uoo it 10
3.4 Running the EXample ProjECE..........u ittt e e e e e e et eesessssssssssnsssnsnsnsnnnsnsnnes 11
4. Example Project for RA6M3 (SCE7) AES User Key Handling............ccccooiiiiiiiiiiiiiiieinne 13
4.1 Import and Compile the Example Project........ ... 13
4.2 FSP API Used in the Plaintext KEY WIrap........c..uviiiiiiii ettt a e 13
4.3 Setting UP the HArAWAIE.........ooooiiiieeee et e e e e s e e e e e e e st ae e e e e e e e s annrneees 14
4.4 Running the EXample Project.........cooo oo 14
5. Example Project for RA8M1 (RSIP) AES User Key Injectionccoveeiiiiiiiiiiiiiiiceeeeeee, 15
5.1 Import and Compile the EXample ProjECt...........coocuiiiiiiiii it e e 15
5.2 FSP APl Used in the PlainteXt KEY WIapccoi ittt e e e e e st e e e e e e e e 15
5.3 Setting UP the HardwWare.............uioi e e 16
5.4 Running the EXample Project....... ..o 16
T €1 (o =TT PP 17
A = 1= =Y 1o > 17
8. WEDSIte anNd SUPPOITeeiiiiiiiiiiiiiiie s 17
RN IS (o o 1] (] TR PPPPPIN 18
R11AN0473EU0200 Rev.2.00 Page 2 of 18

Jan.10.24 RENESAS

Renesas RA Family Injecting Plaintext User Keys

1. Root of Trust and its Protection

1.1 What is Root of Trust

Roots of trust are highly reliable hardware, firmware, and software components that perform specific, critical
security functions (https://csrc.nist.gov/projects/hardware-roots-of-trust). In an loT system, a root of trust
typically consists of identity and cryptographic keys rooted in the hardware of a device. It establishes a
unique, immutable, and unclonable identity to authorize a device in the l1oT network.

e Secure boots are part of the services provided in the Root of Trust in many security systems.
Authentication of the application utilizes Public Key Encryption. The associated keys are part of the Root
of Trust of the system.

o Device Identity, which consists of Device Private Key and Device Certificate, is part of the Root of Trust
for many loT devices.

1.2 Protecting the Root of Trust

From the above Root of Trust discussion, we can realize that leakage of the cryptographic user keys can
bring the secure system into a risky state. Protection of the Root of Trust involves key accessibility within the
cryptographic boundary only and keys that are unclonable. The Root of Trust should be locked from read
and write access from unauthorized parties.

The Renesas user key management system can provide all the above desired protection. In addition,
Renesas user key injection services provide several options from which users can select injection methods
that fit their existing architecture.

1.3 Introduction to Secure Crypto Engine and Associated Keys

The security engine (RSIP, SCE9, SCE7, SCE5 or SCE5_B) is an isolated subsystem within the MCU. The
security engine contains hardware accelerators for symmetric and asymmetric cryptographic algorithms, as
well as various hashes and message authentication codes. It also contains a True Random Number
Generator (TRNG), providing an entropy source for cryptographic operations. The security engine is
protected by an Access Management Circuit, which can shut down the security engine in the event of an
illegal external access attempt. Figure 1 shows the conceptual diagram of the security engine.

Refer to Table 1 for a list of cryptographic operations that are supported by each type of security engine.

MCU Hardware Root
Access Management Ke

Circuit
Shuts down in the event of an
illegal access attempt.

Used for injecting DLM and
debug authentication keys and
externally-created application
keys

Asymmetric Symmetric
Crypto Engine Crypto Engine

§ ‘ True Random Number
Hash Engine L Generator
SP800-22 entropy source with

NIST-certified DRBG SP800-
90A and SP800-90B compliance

Crypto Accelerators
RSA up to 4K, ECC NIST and
Brainpool curves up to 521-bit

keys plus Ed25519, AES-
128/192/256, SHAZ2-
224/256/384/512, CMAC,
GMAC, HMAC

=
5
3]
=
(®]
o
c
@
=
@
o
©
=
)
7
o)
0
o]
<C

RSIP-E51A

Figure 1. Secure Crypto Engine

The Hardware Root Key (HRK) is not a single key that is physically stored. It is represented here as such to
simplify the description of the concepts. The SCE has its own dedicated internal RAM for operations that
deal with sensitive material such as plaintext keys. All crypto operations are physically isolated within the
SCE. This RAM is not accessible outside the security engine.

R11AN0473EU0200 Rev.2.00 Page 3 of 18
Jan.10.24 RENESAS

https://csrc.nist.gov/projects/hardware-roots-of-trust

Renesas RA Family Injecting Plaintext User Keys

The security engine has its own dedicated internal RAM, enabling all crypto operations to be physically
isolated within the security engine. This, combined with advanced key handling capability, means that it is
possible to implement applications where there is no plaintext key exposure on any CPU-accessible bus.

Secure key storage and usage is accomplished by storing application keys in wrapped format, encrypted by
the MCU’s Hardware Unique Key (HUK) and tagged with a Message Authentication Code (MAC). Since
wrapped keys can only be unwrapped by the security engine within the specific MCU that wrapped them, the
wrapping mechanism provides unclonable secure storage of application keys.

The security engine is packed full of cryptography features that users can leverage in higher-level solutions,
providing the option to use hardware acceleration for reducing both execution time and power consumption.
There are four different versions of SCEs for Renesas RA MCUs. All of the security engines offer AES,
TRNG, and secure key storage and usage. The SCE7 and SCE9 expand this by offering both RSA and ECC
for PKI solutions. The full complement of SCE9 Protected Mode crypto algorithms plus a selection of SCE7
crypto algorithms are NIST CAVP certified. Table 1 summarizes the different security engines and their
associated cryptographic functionalities.

Table 1. SCE Cryptographic Capabilities

Cryptographic Isolation
Security . .
Enai Security Engine RSIP-E51A SCE9 SCE7 SCE5_B SCE5
ngines
Identity & Key Exchange (Asymmetric)
Key Gen,
RSA Sign/Verify Up to 4K Up to 4K Up to 2K - -
ECC Key Bem ECDSA| Uptos21bit | Upto512bit | Upto 384 bit ; ;
Ed25519 | EdDSA Y - - - -
DSA Sign/Verify - Y - -
Privacy (Symmetric)
ECB, CBC, CTR 128/192/256 128/192/256 128/192/256 128/256 128/256
GCTR 128/192/256 128/192/256 128/192/256 - -
AES XTS 128/256 128/256 128/256 - -
CCM, GCM,
CMAC, GMAC 128/192/256 128/192/256 128/192/256 128/256 128/256
Data Integrity
GHASH Y Y Y - -
SHA224/256/
Hash HMAC 384/512 SHA224/256 SHA224/256 - -
SHA-2 (224/256) Y Y Y - -
SHA-2 (384/512) Y - - - -
HW Entropy,
TRNG SP800-90B Y Y Y Y Y
Key Handling
Confidentiality,
Hlizpsse authenticity Y Y Y Y Y
Plaintext | -893% Y Y Y Y Y
compatibility

The features of the various Security Engines are:

e SCES5 provides hardware-accelerated symmetric encryption for confidentiality. The updated SCE5_B
uses enhanced secure key handling leveraging an injected MCU-unique HUK.

e SCE7 adds asymmetric encryption and advanced hash functions for integrity and authentication.

e SCE9 expands upon the SCE7 by leveraging an injected MCU-unique HUK for secure key handling and
increasing RSA support up to RSA-4K.

e RSIP expands upon the SCE9 by adding advanced cryptographic algorithms like EADSA, ECC
secp521r1, SHA384, and SHA512.

The security engines use a Hardware Unique Key (HUK) for secure storage of application keys. For RSIP-
E51A and SCE9, the MCU-unique HUK is a 256-bit random key. For SCE5_B, the HUK is a 128-bit random
key. These HUKSs are injected in the Renesas factory, and they are never exposed outside the security
engine. This key is stored in wrapped format using an MCU-unique key wrapping mechanism, ensuring that

R11AN0473EU0200 Rev.2.00 Page 4 of 18
Jan.10.24 RENESAS

Renesas RA Family Injecting Plaintext User Keys

even if an attacker were able to extract the stored key, another MCU will not be able to use it. The MCU-
unique HUK for SCE5 and SCE?7 is a derived MCU-unique key. The derived HUK for SCE7 and SCES5 is
never stored and is never exposed outside the security engine.

This application project uses the RA8M1, RA6M4 and RA6M3 MCUs to demonstrate the plaintext key
injection using the FSP Crypto API as well as the PSA Crypto API.

2. Plaintext User Key Injection

2.1 Plaintext User Key Injection Features

Plaintext user key refers to the fact that the user keys can be provided in plaintext format to the security
engine. When the plaintext key is injected, the security engine wraps the plaintext key with HUK and
provides the wrapped key outside security engine for storage.

MCU HUK

vash‘ External M KSecure Crypto Engine (SCE]) @™ Flaintext Key

@ 1CU-unigue HUK?

w < D @w» 1CU HRKE
emory, or RAV

Figure 2. Plaintext Key Injection for SCE

This plaintext key injection process gives all security control of the keys to the product developer, which
enables the developer to benefit from any existing secure key provisioning infrastructure. However, we do
not recommend long-term storage of plaintext keys on the MCU. Therefore, the RA Family MCUs have the
capability to inject and securely store a plaintext key in wrapped format by wrapping the key with the MCU
HUK.

Getting the plaintext user key into the MCU RAM or flash in preparation for injection is out of scope for this
application project. Product developers can use their existing infrastructure to interface to the MCU based on
their specific environment.

Note: This plaintext key injection procedure should be performed in a secure environment.

Key wrapping with security engine involves encryption using the MAC of the MCU-unique ID and user key
encrypted with the HUK. The encryption aspect provides confidentiality of the key. Wrapping with MAC code
adds integrity and authenticity. Finally, wrapping with the MCU HUK adds cloning protection.

R11AN0473EU0200 Rev.2.00 Page 5 of 18
Jan.10.24 RENESAS

Renesas RA Family Injecting Plaintext User Keys

2.1.1 Advantages of Key Wrapping over Key Encryption

100104

0010 110104 No
110101
r - 01011 ATyt ™
h # - - ' Indlcatlon

‘ that the
100101
)= - = —
Encryption

100101 oo

— — o ©
11011 @ 101011
118101 - - w0
131011

data was
corrupted

000000
1111144
000000

100101

110101 H H
101011 Ja\S Indication

that the
0ooooo
111111
000000 m

0010

Wrapping

Encryption plus Integrity

Figure 3. Key Wrapping vs. Key Encryption

data was
corrupted

It is important to understand the difference between wrapping and encrypting for secure asset storage. We

will use symmetric encryption here to demonstrate.

When data is encrypted and sent to another recipient, if that recipient has the same key, they can decrypt the
data. This results in a confidential exchange of information. However, what if there was a problem with the
transmission of the encrypted data? If the recipient unknowingly receives corrupted information, the
decryption algorithm will generate garbage data, with no indication that the original data has been corrupted.

Wrapping solves this problem for us by adding an integrity checking mechanism to the encrypted output.
2.1.2 Advantages of Key Wrapping using MCU HUK

Benefits of MCU-unique Key Wrapping

v Encrypting provides confidentiality

v Wrapping adds integrity

v Special wrapping techniques add authenticity

¥v" Wrapping with the MCU Hardware Unique Key adds
protection against cloning

Only this
% MCU
can
a— — e 9
— -G

HUK Wrapping

Encryption plus Integrity
plus Clone Protection

Figure 4. Key Wrapping Using the HUK

Using the MCU Hardware Unique Key to wrap the stored keys adds another protection feature — clone
protection.

R11AN0473EU0200 Rev.2.00 Page 6 of 18
Jan.10.24 RENESAS

Renesas RA Family Injecting Plaintext User Keys

e |f the wrapped key is transmitted or copied to another MCU, that MCU’s HUK will not be able to unwrap
nor decrypt the information, maintaining the security of the key.

e MCU-wrapped keys can only be unwrapped by the MCU that wrapped them:
— The MCU’s HUK is used as part of the wrapping algorithm.
— Since the HUK is unique, no other MCU can unwrap the key.

Benefits

o Wrapped keys can be stored in non-secure memory.
e Even if the entire MCU contents are copied onto another device, the keys cannot be utilized or exposed.

2.2 Plaintext User Key Injection Use Cases
This section summarizes several common use cases for key injection.
Case 1: Plaintext Key Injection During Production Provisioning/Programming

In this case, user keys are injected to the MCU based on customer’s existing or preferred method. The
injected plaintext key is then injected by MCU application-level code using the Renesas RA Family FSP. This
use case enables injection of pre-generated keys, which should be performed in a secure environment. The
FSP APIs used are demonstrated in the example projects included in this application project.

-..o_ , %

- - - - ; e
—I
c—
@™ MCU HRK*
W = Plaintext key installation is supported by the RA Family Flexible Software Package
= Must be performed by custom application-level code User Key
* Resuits in a two-step provisioning/programming process @™ MCU-unique HUK"
= Enables installation of pre-generated keys
= Secure programming environment highly recommended | * KDF functions

Figure 5. Plaintext Key Injection During Production
Case 2: Plaintext Key Injection Over Secure Communication Path

It is possible to provide a secure communication path for plaintext key injection. In this use case, the plaintext
key is securely transmitted and injected to the MCU. The MCU secure application software then injects the
plaintext key, storing the key in wrapped format. Solutions to support this use case are dependent on the
communication path implementation. Customers can leverage the MCU operations provided for Case 1 to
implement this solution.

R11AN0473EU0200 Rev.2.00 Page 7 of 18
Jan.10.24 RENESAS

Renesas RA Family Injecting Plaintext User Keys

] |
1 o] -
t P ' & A
1 h I ‘ ’
1 1
—I
c—
@ = MCU HRK*
= Plaintext key installation is supported by the RA Family Flexible Software Package User Key
= Secure communication path is required
= Closed ecosystem @™ MCU-unique HUK"
* Intemet communication using TLS
* KDF functiens

Figure 6. Plaintext Key Injection Over Secure Communication Path
Comparing Key Injection and MCU Key Generation
The following table summarizes the use case comparison between Key Injection and MCU Key Generation:

Table 2. Use Case Comparison with MCU Generated Keys

Use Case Plaintext Key Injection MCU Key Generation (Wrapped Key)
Mass Production Provides scalability, Faster | Provides scalability, Slower

Secure Environment Recommended Not required

Device Identity Supported Supported

3. Example Project for RA6M4 (SCE9) with AES User Key Handling

The hardware features of SCE9 are accessed through the FSP driver r_sce, which can access the key
injection APIs. For most application development, developers can use the middleware Platform Security
Architecture (PSA) Crypto layer to interface with the SCE9. However, some SCE9 functionality does not map
to PSA Crypto APIs; therefore, r_sce key injection related APIs must be used directly.

PSA Crypto AR

PSA Crypto Features

fhed Crypto

mhedTLS (Crypto)

I

rrn_psa_crypto

|

r_sce

Figure 7. Crypto Stacks

Using PSA Crypto with TrustZone® needs some special handling compared with other drivers. Unlike other
FSP drivers, the PSA Crypto module cannot be added as a Non-Secure-Callable module. The reason for this
is that to achieve the security objective of controlling access to protected keys, both the PSA Crypto code
and the keys must be placed in the Secure region. The PSA Crypto API requires access to the keys directly
during initialization and later through a key handle. Therefore, the PSA Crypto module should reside in the
Secure region.

R11AN0473EU0200 Rev.2.00 Page 8 of 18
Jan.10.24 RENESAS

Renesas RA Family Injecting Plaintext User Keys

To provide services to the Non-Secure region, you need to create application-specific, user-defined Non-
Secure Callable (NSC) APIs in the Secure region. Proper security considerations can be implemented in the
Non-Secure Callable API to limit access to the NSC APls.

The need for the Non-Secure region accessing cryptographic service in the Secure region varies from
application to application. You need to adjust the Non-Secure Callable API provided in this example project
based on your specific application. It is not advised to use the example as-is for a real-world secure
application.

Figure 8 is the high-level software block diagram of the example project provided in this application project.

Color Legend

Secure Partition

NSC APl Veneer

Figure 8. Software Block Diagram
The Non-Secure Callable APIs are defined in aes_functions.h file. These APIs are explained as follows:

e BSP_CMSE NONSECURE ENTRY bool init 1lfs(void);
Initializes the LittleFS system: formatted and mounted.

e BSP_CMSE_NONSECURE_ ENTRY bool psacrypto AES256CBC_example NIST (void)
Allows the Non-Secure project to initiate new AES key creation by injecting a 256-bit AES plaintext key
(using a set of NIST vector) as a wrapped key. Once the plaintext user key is injected into the MCU, the
SCE9 driver is used to convert the plaintext key into wrapped key format by wrapping the plaintext key
using the HUK. The plaintext key will be erased immediately after the conversion. The wrapped AES key
is further imported into the PSA key storage system and stored in the data flash for user application
usage.

Then the example project uses this injected key to perform encryption and decryption operation.

R11AN0473EU0200 Rev.2.00 Page 9 of 18
Jan.10.24 RENESAS

Renesas RA Family Injecting Plaintext User Keys

3.1 FSP APl Used in the Plaintext Key Wrap

The API shown below performs the initial AES256 key wrapping. This API supports both secure key and
plaintext key APIs. Notice that some arguments are ignored in plaintext key wrapping.

by the Repesas Key Wrap Service.

is is not required and

ory_programming_key

when generating encrypted_key.

ain key, this is not required and

[in] encrypted_key
[in,out] wrapped_key

FSP_SUCCESS Normal termi
FSP_ERR_UNSUPPORTED API not sup
If an error oc ., the return value will be

* FSP_ERR_CRYP S FAIL Internal I/0 buf

Mo

‘ :SP_ERR_[R}FTD_SCE:RESDLR[E_CDL:,I[T A resource conflict occurred because a hardware resource needed.

The pre-run state is SCE Enabled State.

After the function runs the state transitions to SCE Enabled State.

fsp_err_t R_SCE_AES256_InitialKeyWrap (const uint8_t * const key_type,

*
const uint3 t * const wrapped_user_factory_programming_key,
const uint8_t * const initial_vector,
const uint8_t * const encrypted_key,

sce_aes_wrapped_key_t * const wrapped_key)

Figure 9. AES256 KeyWrap API

3.2 Import and Compile the Example Project

Follow the FSP User’'s Manual section Importing an Existing Project into e? studio to import the Secure and
Non-Secure Projects into the workspace and compile in the order shown below:

1. Expand the secure project plaintext key injection ek raém4 s and double-click
configuration.xml to launch the configurator. Click Generate Project Content, then build the
Secure project. The project should build with no errors.

Note that there are third party software warnings.

2. Expand the non-secure project plaintext key injection ek raémé4 ns and double-click
configuration.xml to launch the configurator. Click Generate Project Content, then build the non-
secure project.

3.3 Setting up the Hardware
Establish the following connections:

o EK-RA6M4 jumper setting: J6 closed, J9 open. For other jumpers, keep the out-of-box setting.
e USB cable connected between J10 and the development PC to provide power and debugging capability
using the on-board debugger.

Initialize the MCU using Renesas Device Partition Manager

This step is optional but recommended. Prior to downloading the example application, we recommend
initializing the device to the Secure Software Development (SSD) state. Flash content that is not permanently
locked down will be erased during this process. This is particularly helpful if the device was previously used
in the Non-Secure Software Development (NSECSD) state or has certain flash blocks locked up temporarily.

Note: You need to power cycle the board prior to working with the Renesas Device Partition Manager
after a debug session if using J-Link as the connection interface.

Open the Renesas Device Partition Manager. With the e? studio ISDE, click the Run tab, then select
Renesas Debug Tools > Renesas Device Partition Manager.

R11AN0473EU0200 Rev.2.00 Page 10 of 18
Jan.10.24 RENESAS

Renesas RA Family Injecting Plaintext User Keys

Fun) “Window Help

[Renesas Debug Tools * Renesas Dewvice Partition Manager
Resurme Ea TraceX
Suspend (B Tracealyzer

Figure 10. Open Renesas Device Partition Manager

Next, check Initialize device back to factory default, choose J-Link as the connection method, then click
Run.

{8} Renesas Device Partition Manager O =

Action

Read current device information - SIS I S i

Set TrustZone secure / non-secure boundaries Initialize device back to factory default

Target MCU connection: I | J-Link ks |I

Serial Mo

n

Debugger supply voltage (V): 0

Baud rate: 9600

DLM state to change to: 55D - Secure Software Development e

Memory partition sizes
Code Flash Secure (KB): @
Code Flash NSC (KB): 23

Data Flash Secure (KB): 0

SRAM Secure (KB): %
SRAM MSC (KB): &
Command line tocl: Browse...
[]
':?3' Impert Export Run Close

Figure 11. Initialize RA6M4 Using Renesas Device Partition Manager
3.4 Running the Example Project

To run the application, right-click on plaintext key injection ra6m4 ns and select Debug As >
Renesas GDB Hardware Debugging.

Note that prior to the application execution, the Implementation Defined Attribute Unit (IDAU) regions will be
set up to assume the values through the debugger interaction with the MCU bootloader.

Both the Secure and Non-Secure projects are now loaded, and the debugger should be paused in the
Reset Handler () atthe SystemInit () call in the Secure project.

R11AN0473EU0200 Rev.2.00 Page 11 of 18
Jan.10.24 RENESAS

Renesas RA Family Injecting Plaintext User Keys

£ Project Explorer 22 = <§> 78 = B linstalling_utilizing_user_keys_rabme_s] FSP Canfiguration 5% [installing_utilizing_user_keys_rabrm4_ns] FSP Canfiguration [startup.c 52 mai
= installing_utilizing_user_keys rabm+4_ns [Debug] 34
v IS installing_utilizing_user_keys_rafrd_s 36 @ * Typedef definitions]]
T EL]
35, Binaries 39 f* Defines functien pointers te be used with wector tahle. */f
el Includes 4@ typedef woid (* exc_ptr_t){void);
=] 41
= ra_gen 43 ® * Exported global variables [to be accessed by other files)[]
B i + . . :
= Debu 47 ® * Private global varisbles and functions[]
- 4 49 void Reset_Handler(void);
(= ra_cfg 5@ void Def ault_Handler{woid);
= script 51 int32_t main(void);
$E configurationzaml 52

54 @ * MCU starts executing here out of reset. Main stack peinter is set up already.[]
56 = woid Reset_Handler (void)
57

S5 { #* Initialize system usin a Confirm Perspective Switch X
59 2@e13bec systemInit();

=15

58 #* Call user application. _
62 Bae13h72 main(); " This Debug perspective supports application debugging by providing wiews for
B3 displaying the debug stack, variables and breakpaints,

[==3 = while (1)
5 { Swiitch to this perspective?
a6 #* Infinite Loop. *f
A7 PR ShTA *

crypto_service_test_s Debug,jlink
installing_utilizing_user_keys_rafimd_s Debug.launch
RTFAGMAAFICFR.pincfg

ra_cfg.bed

(%) Developer Assistance

[[[

% This kind of launch is configured to open the Debug perspective when it suspends.

[IRernember rry decision

[#] Problems B Console 52 @& Smart Browser Mo

installing_utilizing_user_keys_rafmd_ns Debug_550 [Renesas G0

Figure 12. Secure Project Reset Handler

Click Switch if the Confirm Perspective Switch window pops up. Click Lg twice to run the project.
Next, launch J-Link RTT Viewer V6.86 or later.

LA J-Link RTT Logger

e RTT Viewer

Figure 13. Launch J-Link RTT Viewer

Select Existing Session as connection type. Click on the ‘= button and scroll down to Renesas to find the
correct device RTFA6M4AF. Also set up the RTT Control Block to Search Range. Set the search range to
0x20000000 0x10000 and then click OK to start the RTT Viewer.

Note: The Search Size 0x10000 is based on this example application project. If your application uses the
RTT Viewer in the Non-Secure region and there is a large secure binary, you need to increase the
Search Size to cover the Non-Secure project SRAM regions.

If the host PC has more than one J-Link debugger connected to the PC, set the Serial No (by default Serial
No is set to 0).

R11AN0473EU0200 Rev.2.00 Page 12 of 18
Jan.10.24 RENESAS

Renesas RA Family Injecting Plaintext User Keys

EA J-Link RTT Wiewer W6.86 | Configuration ? >

Connection ko J-Link,

(0) usk
() TCRiIP

(@) Existing Session Auko Reconneck

Specify Targek Device

R7FAGMIAF |I

Script: file {optional)

Target Interface & Speed
WD 4000 kHz

RTT Control Block

() Auko Detection () Address (®) Search Range

Enter one or more address rangeis) the RTT Control block can be Ic
Swntax: <RangeStart [Hex]>= <RangeSize [, <Rangelstart [Hex]
Example: 0x10000000 0x:1000, 0x2000000 0:x 1000

Q20000000 Ox 10000 |

(0] 4 | Cancel
—_—

Figure 14. Launch SEGGER RTT Viewer

Click OK and observe the following output.

EEEEEEERFEE XXX ERE LR R X R LR R R LR ERRERE R LR LR R R R R EEE LR EE R LR R R R LR R R LR E®

Utilizing the AES service which resides in secure region of RAGM4
B T T T T T T T T T e T T T T T

LFS initialization successful

Plaintext key injected as wrapped AES key successfully.

Encryption is successful. Encrypted data matches NIST cipher text.

Decryption is successful. Decrypted data matches NIST plaintext message.

Figure 15. RA6M4 Plaintext Key Injection Demonstration

4. Example Project for RA6M3 (SCE7) AES User Key Handling

See Figure 7 for the crypto stack used for this example project. From a high-level understanding, they are
identical.

4.1 Import and Compile the Example Project

Follow the FSP User’'s Manual section Importing an Existing Project into e? studio to import the example
project plaintext key injection ek raé6m3 to a workspace.

Expand the project plaintext key injection ek raém3 and double-click configuration.xml to
launch the configurator. Click Generate Project Content, then build the project. The project should be built
with no errors.

4.2 FSP APl Used in the Plaintext Key Wrap

The API shown in this section performs the initial AES128 key wrapping (similar to the AES256 key wrapping
API). This API supports both secure key and plaintext key APIs. Notice that some arguments are ignored in
plaintext key wrapping.

R11AN0473EU0200 Rev.2.00 Page 13 of 18
Jan.10.24 RENESAS

Renesas RA Family Injecting Plaintext User Keys

This API generates 128-bit AES key within the user routine.
[in] key_type Selection key type when generating wrapped key
(8: for encr d key, 1: for plain key)
[in] wrapped_user_factory_programming_key Wrapped us factory programming key the Renesas Key Wrap Service.

When key_type is 1 as plain key, this is not required and
any value can be specified.

[in] initial_vector Initialization vector
When key_ type is

hen generating encrypted_key.

in key, this is not required and
alue can be specified.

ed user key and MAC appended

it AES wrapped key

[in] encrypted_key
[in,cut] wrapped_key

FSP_SUCCESS Normal termination.
FSP_ERR_UNSUPPORTED API not supported.
If an error occurs, the return value will be as follows

* FSP_ERR_CRYPTO_SCE
* FSP_ERR_CRYPTO_SCE

IL Internal I/0 buffer is not empty.
ESOURCE_CONFLICT A resource conflict occurred because a hardware resource needed.

The pre-run state is SCE Enabled State.

After the function runs the state transitions to SCE Enabled State.
fsp_err_t R_SCE_AES128 InitialKeyWrap (const uint3_t * const key type,
const uint3_t * const wrapped_user_factory_programming_key,
const uint3_t * const initial vector,
const uint3_t * const encrypted_key,
sce_aes_wrapped_key t * const wrapped_key)

Figure 16. AES128 KeyWrap API

4.3 Setting up the Hardware

Connect J10 from EK-RAB6M3 to the development PC to provide power and debugging capability using the
on-board debugger.

4.4 Running the Example Project

To run the application, right-click on plaintext key injection ek raém3 and select Debug As >
Renesas GDB Hardware Debugging.

Click Switch if the Confirm Perspective Switch window pops up. Click g twice to run the project.
Next, launch J-Link RTT Viewer V6.86 or later.

P J-Link RTT Logger

Li—?.k TT Viewer

Figure 17. Launch J-Link RTT Viewer
Configure the RTTViewer as shown in Figure 18.

Connection to J-Link

() TCRIP
O Existing Session

; Sﬁdﬂ Target Device

RTFAGM3AH |

Script file (optional)

Target Interface & Speed

SWD | 4000 kHz

RTT Control Block
(®) Auto Detection () Address (") Search Range
Jink automatically detects the RTT contral block,

e

Figure 18. Configure the RTT Viewer for EK-RA6M3

R11AN0473EU0200 Rev.2.00 Page 14 of 18
Jan.10.24 RENESAS

Renesas RA Family Injecting Plaintext User Keys

Click OK and observe the RTT Viewer output as shown in Figure 19.

Result: Initial AE

sult: Cryptographic operation is successful with initial wrapped AES 128 key

Result: Cryptographic operation is successful with updated wrapped AES 128 key

Figure 19. Expected Execution Result of the RA6M3 Example Project
5. Example Project for RA8M1 (RSIP) AES User Key Injection

See Figure 7 for the crypto stack used for this example project. From a high-level understanding, they are
identical.
5.1 Import and Compile the Example Project

Follow the FSP User’'s Manual section Importing an Existing Project into e? studio to import the example
project plaintext key injection ra8ml to a workspace.

Expand the project plaintext key injection ra8ml and double-click configuration.xml to
launch the configurator. Click Generate Project Content, then build the project. The project should be built
with no errors.

5.2 FSP APl Used in the Plaintext Key Wrap

The API shown below performs the initial AES256 key wrapping. This API supports both secure key and
plaintext key APIs. Notice that some arguments are ignored in plaintext key wrapping.

5 required and any value can be specified
e is not plain, it is encrypted and MAC appended
ormal
) .——T r NUL
MA on
Reso
5 i An unknow
* FSP_ERR_INVALID STATE Internal ega
e is RSIP Enabled State.
RSIP Enabled Sta
fsp_err_t R_RSIP_AES256_InitialKeyWrap (rsip_key injection_type_t const key_injection_type,
uint8_t const * const p_wrapped_user_factory_programming_key,
uint8_t const * const p_initial vector,
uint8_t const * const p_user_key,
rsip_aes_wrapped_key t * const p_wrapped_key)
-
Figure 20. RSIP AES256 Key Wrap API
R11AN0473EU0200 Rev.2.00 Page 15 of 18

Jan.10.24 RENESAS

Renesas RA Family Injecting Plaintext User Keys

5.3 Setting up the Hardware

Connect J10 from EK-RA8M1 to the development PC to provide power and debugging capability using the
on-board debugger.

5.4 Running the Example Project

To run the application, right-click on plaintext key injection ra8ml and select Debug As >
Renesas GDB Hardware Debugging.

Click Switch if the Confirm Perspective Switch window pops up. Click Lg twice to run the project.

Next, launch J-Link RTT Viewer V7.910 or later.

P J-Link RTT Logger

(2 J-Link RTT Viewer

Figure 21. Launch J-Link RTT Viewer

Configure the RTTViewer as shown in Figure 18.

Connection to J-Link

O uss
O TCpIP

[®) Existing Session [[] Auto Reconnect

[use non-defauit port

Specify Target Device

Script file (optional)

Target Interface & Speed
SWD 4000 kHz

RTT Control Block
(O AutoDetection () Address (®) Search Range

Enter one or more address range(s) the RTT Control block can be loc
Syntax: <RangeStart [Hex] > <RangeSize>[, <Range1Start [Hex] >
Example: 0x10000000 0x1000, 0x2000000 0x1000

| 0x22000000 ox8000 |

Cancel

Figure 22. Configure the RTT Viewer for EK-RA6M3

Click OK and observe the RTT Viewer output as shown in Figure 19.

LFS initialization success
R_RSIP_AES256_Initial is successful.
Encryption operation o ul.
Decryption operation is suc ul.

RSIP-E51A AES key injection operation is successful.

Figure 23. Expected Execution Result of the RA8M1 Example Project

R11AN0473EU0200 Rev.2.00 Page 16 of 18
Jan.10.24 RENESAS

Renesas RA Family Injecting Plaintext User Keys

6. Glossary
Term Meaning
HSM A Hardware Security Module (HSM) is a physical computing device that safeguards

and manages digital keys, performs encryption and decryption functions for digital
signatures, strong authentication, and other cryptographic functions.

HRK Hardware Root Key is a secret key, residing in the security engine, that is common for
each MCU.

Unique ID | A Unique Identification value, unique to each individual RA Family MCU, that is stored
inside the MCU.

MAC Message Authentication Code is a short piece of information used to authenticate a
message to confirm that the message came from the stated sender (its authenticity) and
has not been changed. A cryptographic MAC protects both a message’s data integrity
and its authenticity, by allowing verifiers (who also possess the secret key) to detect any
changes to the message content.

7. References

1. Renesas RA Family MCU Device Lifecycle Management Key Injection (R11AN0469)

2. Renesas RA Family MCU Secure Key Injection and Update (R11AN0496)

3. Renesas RA Family MCU Security Design with TrustZone® — IP Protection (R11AN0467)

4. Renesas RA Family Secure Crypto Engine Operational Modes Application Note (R11AN0498)
8. Website and Support

Visit the following URLSs to learn about the RA family of microcontrollers, download tools and documentation,
and get support.

EK-RA6M4 Resources renesas.com/ra/ek-rabm4
RA Product Information renesas.com/ra
Flexible Software Package (FSP) renesas.com/ral/fsp
RA Product Support Forum renesas.com/ra/forum
Renesas Support renesas.com/support
R11AN0473EU0200 Rev.2.00 Page 17 of 18

Jan.10.24 RENESAS

https://www.renesas.com/ra/ek-ra6m4
https://www.renesas.com/ra
http://www.renesas.com/fsp
https://www.renesas.com/ra/forum
https://www.renesas.com/support

Renesas RA Family

Injecting Plaintext User Keys

Revision History

Description

Rev. Date Page Summary

1.00 Dec.2.20 - First release document.

1.10 Dec.20.20 - Added missing graph.

1.20 Nov.11.21 - Minor updates.

1.30 Dec.07.21 - Fix Wrap Key API Call bug.

1.40 Nov.11.22 - Changed the document title from “Installing and Utilizing the
Cryptographic User Keys using SCE9” to “Injecting Plaintext
User Keys” and added SCE7 support.

2.00 Jan.10.24 - Updated to FSP v5.1.0.

R11AN0473EU0200 Rev.2.00

Jan.10.24

Re Page 18 of 18
RENESAS

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied unt